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Abstract

In this thesis we present some new results along with some well-known results on
Elliptic Systems of Phase transition Type, and in particular on junctions and votices.
Our results are joint work mainly with Panayotis Smyrnelis.

In Chapter 1 we deal with the physical origins of these equations and the intuition
that comes from materials science and quantum mechanics.

In Chapter 2 we study the problem of motion of interfaces for networks. We also
deal with motion by curvature with various constraints, derived from a bounded set, and
we show C1*—convergence, along with some exponential estimates on the speed of the
convergence. The mathematical problem here is related to the material science model
presented in Chapter 1.

In Chapter § we study the Ginzburg-Landau energy minimisers in two cases, the
smooth and the non-smooth. In the smooth case we show the existence of vortices
(Hervé-Hervé) and in the non-smooth case, under some symmetry assumptions, we find
exactly the form of the vortices in all dimensions. The mathematical problem here is
related to the quantum mechanical model, presented in Chapter 1.

In Chapter 4 we deal with the correlation of phase transition problems with the
calculus of variations and I'—convergence. The basic theorems here are related to the
['—convergence of the energy to the perimeter functional (Modica, Pacard-Ritoré). This
chapter, together with parts of the first, was presented in an extended form in November
2024 at the Mathematics Club. Many thanks for the comments of those present, which
helped to better shape the text.

Finally, there are two appendices, one on analysis and one on geometry, where
some of the prerequisites and basic theorems used throughout the text are presented.






IeptAnd,

e oautny Ny epyacia wapovsialovpe xamola véa amoteAéopata pall pe xamwota
vvwotd anoteréopata oto EAdetmtuind vstipoata Tomov AAdayrg Pdcng, xat cuy-
xexpléva e Toug xopBoug (junctions) xat tig diveg (vortices). To amotedéapatd pog
ebvat ae auvepyasio xuplwg pe tov Mavaytwtn Zpopvér.

Y7o Keddhato 1 aoyolodpacte pe 1 $uctxy] TPOEAELGY) TV EELGMGEWY QUTWY Kot
) Stalo0noy) ToL TPoEpYETAL ATTO TNV ETLGTYLY) TWV DALXMDY XL TN XBOVTOUT)AVLXY).

Y7o Keddrato 2 peietodype to Tpofanpa g xivneng Twy dtemidavetwy (interfaces)
vt T Sixtua. Entiong, asyohodpaate pe Ty xivnom pésw xap.TuAGTTAS e SLddopous
TEpLoptopods, ToL TPoEpyovTaL aTth Eva Gparypévo chVoho, xat Selyvoupe CH*—ahyxALo
poall pe xamoteg exbetinég extipnoetg 66ov adopd v taybTnTa g cbyxAone. To
podnpatind TpofAnpa edw oyetiletal pe To PLoVTEAo TNS ETGTNUNG TWY LALXMY, TOU
Tapoustastre 6to Kebarato 1.

Yto Keddhoto g pehetodpe toug ehaytatomolntéc tng evépyetag Ginzburg-Landau
Ge 000 TMEPLTTWGELS, GTY) OPOAT) XOL TYY UN-0LaAY). XTY) OpoAY) TeplmTtman Selyvoupe
v Omaply tov Sveov (Hervé-Hervé) xat atnv un-opady), uwo xdmwoteg vrobéaetg sup.-
petplag, Bploxovpe axptBwg T popdr Tov Stvwy ot 0Aeg Ti¢ dtaatdaets. To padnpatind
TpOEANPa €80 oyeTiletal pe To LoVTEAD TNE XBAVTOUNYAVIXYIS, TTOU TOPOUGLAGTNXE GTO
Keddarato 1.

Y7o Keddhato 4 acyorodpacte pe ) GLUGYETNGY TWY TPORANULATOY ahAayMs domg
pe To Aoylopo petaforwy xat ) ['—adyxiien. Ta Basixd fewprpata edw oyetilovrat
pe ™ I'—adyxiton tng evépyetag ato cuvaptnslaxsd e weptpétpouv (Modica, Pacard-
Ritoré). Auté to xedaiato, pall pe TUNROTA TOL TPWTOL, TAPOLGLAGTNXE GE Wio EXTE-
Tapévy ropdr) tov Noéupto tou 2024 ot Adaym Mabnpatiewv. Euyaptato ToAd o ta
GYOALX TWV TUPELPLGROP.EVWY, ToL BoNOnaay TNV xaAlTEPY SLap.opdwGT TOL XELLEVOU.

Téhog, vrdpyovy 800 TapapTHRATA, EVa GTNY AVAALGY) XL VOl GTT) YEWP.ETPLa, OTTOV
Topovstalovtal xdwola améd To TpoaTartodeva xat Ta Basixd Bewprpata Tov ypmat-
LOTCOLOOVTAL GE OAO TO XE(LEVO.
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CHAPTER 1

The Allen-Cahn, Ginzburg-Landau and
related equations

1.1 Physical interpretation

1.1.1  Material science

All of the equations we are going to study are more or less related to the Allen-Cahn
equation. The common denominator of all of these phenomena is some kind of phase
transition taking place, with the more intuitive and geometric of those to probably be
the phase separation in multi-component alloys, which is what we are going to study
first.

When a mixture of elements A; goes through phase separation, it is observed that
pure regions appear, that is regions with almost pure phase Ax. For one to be transfered
from a phase to another, he must pass through an interface of mixed phases . In the
two component case, we observe a change of density from phase A; to phase A; which
resembles tanh. In general, one must examine how exactly the density should be defined,
but in any case density is the object of our study. Phase transitions appear also in
superconductivity, to explain how a superconductor transitions from a normal (non-
superconducting) state to a pure (superconducting) state. Here another kind of density
plays a role, that is Cooper pair density |u|?, and in fact the corresponding wavefunction
of this density, u, is the object of our study. We will mention superconductivity, along
other phenomena, in the next section.

Getting back to alloying, suppose the number of phases is exactly 2. To quantify the
amount of each phase, we use signed density, that is the difference of concentrations
u = c¢(A;) — ¢(As). For convinience, we may assume —1 corresponds to pure phase A,
while +1 to pure phase A,. Since the two phases are seperating, it is intuitive to examine
potentials with two minima at {41}, so that u is forced towards —1 or +1.

A Ay

Figure 1.1

One case of such potential, in fact the simplest which is balanced, is W(u) = $(1 —
u?)?. This is the one dimensional Ginzburg-Landau potential.
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Figure 1.2: One dimensional Ginzburg-Landau potential.
We will suppose for simplicity that W has 0 as its minimum value. Then, the excess
free energy density is given by:
e.(u) = 26|Vul|® + W(u), x> 0 constant

and the total free energy in Q2 C R is:
& (u; Q) = / 26|Vul® + W (u) dz
Q

Here « is usually called gradient energy coefficient, but it is of no importance for us.
Since |Vu| penalises abrupt changes, it is a term associated with the interface energy,
that is with tension.

Now, if we want to examine how the phases balance in space after infinite time, we
calculate 08, (-;€2)/dv for some v € C'°(2), and since we expect balance we set it equal
to 0. We obtain:

5%,}(-; Q) — limé W (u+ev) — W(u) + 26[(V(u+ev), V(u+ev)) — (Vu, Vu)] de
v e—0 Q

_ /Q (Wa(u), v) dz + /Q 4k (Vu, V) dz

:/Q<Wu(u),v> daz—/4/€<Au,v) dx

Q

= /(Wu(u) — 4kAu,v) dz =0, forall ve CX(Q)
Q

where W, denotes the gradient of . It follows that:
AkAu — Wy (u) =0

and if we set 4x = £2 (as it is usual notation):
e2Au—W,(u) =0

we get the time independent Allen-Cahn equation, or just Allen-Cahn. The associated
energy is:

2
. (u: Q) = /Q SV + W) do
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Some authors prefer to use:
€ 5 1
& (u; Q) = | =|Vul"+-W(u) dz
Q2 €

which does not change things. In fact, in Section 1.3 we will obtain Allen-Cahn equation
using the second form of the energy.

This equation generalises in more dimensions. For the many dimensions, we notice
that a mere signed density is not enough to describe the phenomenon, and this is a
consequence of geometry.

As

Al AQ

Figure 1.3

The problem lies in the inability to describe the co-exitence of more than 2 phases.

In the case where the number of phases is g, it is proper to use a vector density, where

pure phases correspond to vertices of a triangle. So, if u is a vector function, we can
show as above that:

e2Au—W,(u) =0, u:R" — R™

Definition 1.1 (Allen-Cahn equation). The Allen-Cahn equation with ¢ > 0 is:
e2Au — W, (u) (1.1)

for some potential W. With W, we denote its gradient. The associated energy is:

&.(u; Q) = /Q §|Vu\2 + W(u) dz (1.2)

or.

%g(u;Q):/Q§|Vu|2+§W(u) da (1.3)

where Q) C R™,

The scalar case v : R® — R can be generalised to Riemannian manifolds, using the
respective gradient and divergence.

(Vu, X) = X (u)
VeX =) (Vi X, E)

k

Au = V+Vu
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1.1.2 Phase transitions and superconductivity

It is by now a well-known phenomenon, that under certain conditions (of pressure and
temperature) some materials lose their resistance. A rather interesting thing, observed
experimentally and proved theoretically, is the existence of two types of superconduc-
tors, based on the transition between normal and superconducting states. First examples
of superconductors belong to the first category, of Type-I superconductors, where phase
transition phenomena are not observed, as we have a spontaneous jump between nor-
mal and superconducting states when magnetic fields are applied. However, there is
another kind of superconductors, that of Type-II, where a transition layer is present,
in which normal and superconducting states coexist. This has lead to a description of
superconductivity (unlike those first models proposed) based on the framework of phase
transitions.

Figure 1.4: Vortices in real life.

In this intermediate mixed state, it is observed (in approximate triangular lattice
form, as predicted by Abrikosov) vortex filaments, which are regions of non-supercondu-
cting state, enclosed by superconducting material. Now, this is not an a priori scheme,
but nowadays it is well known -by the work of Bardeen, Cooper and Schrieffer- that the
correct parameter for this phase transition is some function v (a wavefunction), which
represents the density |u|? of Cooper pairs. Cooper pairs are pairs of electrons, held
together by another strange phenomenon, which is a result of the interaction between
electrons and the atom lattice (usually called phonon effect). Here |u|?> = 0 corresponds
to a non-superconducting state and |u|*> = 1 to a superconducting state.

It turns out that by choosing a potential with a connected set of minima, such as

W(u) = (1 — |u|?)?, a good decription of these phase transition phenomena can be
made. Such potentials force the wavefunction to “move around” the connected set of

minima. The usual form of the equation is:

Au— éWu(u) ~0
which is very similar to its Allen-Cahn counterpart. This is called the Ginzburg-Landau
equation. The constant £ = &(T) is called characteristic length and is proven to be
the radius of each vortex. We emphasise that -excluding the 1—dimensional case- the
difference between Allen-Cahn and Ginzburg-Landau equations lies in the connectedness
of the set of minima.
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h

Normal

Mixed

Superconducting

Figure 1.5

Definition 1.2 (Ginzburg-Landau equation). The Ginzburg-Landau equation with
E>01s:

Au — 6—12Wu(u) =0 (1.4)

The energy is defined as in the Allen-Cahn counterpart.

In Chapter g we review the existence of vortices for the 2—dimensional case. Later,
we also present some results in the case where the potential is non-smooth.

In Figure 1.5 it is shown the dependence of the type of phase transition on the external
magnetic field and on the coupling constant kK = A\/& (where A = A\(T) is the penetration
depth of the applied magnetic field).

1.2 Landau theory for phase transitions

The derivation of the Allen-Cahn equation is compatible with a general theory of phase
transitions that Landau introduced. We will next describe this theory to have a vague
idea of the physics, but we will not be interested in the physics of these phenomena; we
will focus on the mathematical side of them only.

As we have already mentioned, density is important in all kind of phase transition
problems, but is not always the only or best object of study. For example, we have
mentioned that a wavefunction u related to the Cooper pair density |u|? is what encodes
all information about phase transitions in superconductors. Therefore, from now on
we will refer to u as an order parameter and it is generally better to compare it to a
wavefunction rather than to a mere density. The “prostulates” of the theory of Landau
are as follows:

The order parameter: For a given system, an order parameter has to be constructed,
which is zero in the disordered phase and non-zero in the ordered phase.

The free energy functional: The free energy & = &,(T) + &1 (T, u) depends on
parameter (temperature) 7" and in the order parameter u. Also, the energy density fo
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of & is an analytic function.

Dependence on the order parameter: The dependence in the order parameter is
encoded in &, whose density f; is analytic too. The coefficients are determined by the
symmetries associated with u.

Temperature dependence: Sometimes it is assumed that all the non-trivial temper-
ature dependencies reside in the lower order term in the expansion of the density f; of
&.

In fact, to understand more deeply the sketch above, one has to have in mind that
physicists wanted to derive a macroscopic theory inspired from statistical mechanics. It
is easier to describe the phenomenon using a global thing, as a wavefunction, in contrast
to summing over all possible microstates. The statistical mechanics formula for the
energy:

o~ /KT _ Z o~ H(W)/KT
o

should be generalised by interchanging the sum over all microstates p with a functional
integral over all possible wavefunctions:

€%/kT%/g(u)€H(u)/kT9u

— / 6—[H(u)—kT logg(u)]/kTgu

Here k is the Boltzmann constant, H is related to (microscopic) energy and g is a weight
that has to do with the number of microstates that correspond to u. Now, near a critical
point, a saddle-point approximation argument shows that:

%/Vol ~ [~ H(u) — kT'logg(u), f being the density of &

and since in statistical mechanics entropy is related to energy as & = H — T'S, where
H is the total energy, & is the free energy and S the entropy, the quantity & log g(u) is
an analogue of entropy. We denote it by S too. By expanding H and S we obtain:

[~ Z Hw — TZ Syut, with Hy, Sy constants
A=0 A=0

This indicates that the energy density can be decomposed to a part dependent on 7" and
another on 7', u. The analytic conditions are used naturally, to have a workable form of
the energy.

For n = 4 and assuming appropriate symmetries, it is possible to get the Ginzburg-
Landau potential, for some choice of Hy, S). Of course it seems that many more po-
tentials can arise, and indeed they do in nature (for example, unbalanced potentials
resembling the balanced Ginzburg-Landau potential).

1.3 Allen-Cahn and Cahn-Hilliard equations via gradient
flows

Allen-Cahn equation can also be derived from Cahn-Hilliard, by some a gradient flows.
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As it is usual convention in physics, we want to change u so that energy tends to
a minimum. That is, it is logical for u to follow some kind of gradient —V&.(u; ), in
2 C R™, for some notion of gradient. Note that the gradient always points at points of
maximum. This is in a few words the idea of gradient flows.

Ou = —Vg&.(u; Q)

Here the appropriate choice of gradient is the variational gradient or Gateaux differ-
ential. We give the following definition, which can also be generalised to the case of
topological vector spaces.

Figure 1.6

Definition 1.9 (Gateaux differential). Let J : & — R be a functional in a space of
functions or distributions and uw € &'. The Gateaux differential at u is the function
or distribution Vg J(u) for which for every v:

0J

" Sl

(Vg J(u),v)

Here (-,-) in X is either an inner product or the evaluation, if we work in a space of
distributions.

In our case we will work with the homogenous Sobolev space H*():
H'(Q)={uec S Q)| Vuec L*(Q)}

as well as with its dual H~1(Q) = H}(Q)'. With S’ we denote the tempered distributions,
that is distributions in Schwartz space.

As you have probably imagined, the choice of the appropriate inner product for the
definition of the Gateaux differential is of great importance for the Cahn-Hilliard equa-
tion. In what follows we explain how the choice is made and how the Cahn-Hilliard
equation is derived.

Step I: In the dual of homogenous Sobolev space H~1(£2), we can define an inner
product using L?(€2). In fact, the defintion is given for a dense subset of H~(2), and to
be exact we define:

(v1,v2) 1) = (Vou,, Viou, ) 12(0)
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where ¢,,, p,, € H 1(Q) are associates of vy, vo, whose choice will be explained later.
This is what we need to define the gradient of the energy functional.

Step I1: For every v in HZ (), there exists ¢, such that the Neumann boundary value
problem has a solution:

—Ayp, =, in

agi” —0, in 90
mn
Jo 0o dz =0

This is a consequence of the Lax-Milgram theorem (cf. Theorem A.11).

For our case, we define B : H}(Q) x H}(Q) — R:

B<90v1a SOUQ) = <V90U17 V¢U2>L2(Q) = /Q<V90v17 VQDU2> dx

=—/A% oy o
Q

and we prove the bounds required by the Lax-Milgram theorem.
* For the first bound, from Hélder inequality we have:

|B(§0U17§0v2)| < HV(:OMHLZ(Q) : ||V90U2||L2(Q) < O||90U1||H1(Q) ’ H90v2||H1(Q)

 For the coercivity, we have:

B(gpvlu SOU1> = HVQDM | |L2(Q)
and from Poincaré inequality, if (¢, )0 = f, ¢v, dz:
||90U1||2L2(Q) = ||90U1 - (QDM)QH%Q(Q) < C||V90U1||%2(Q) =C- B((pvu 90111)
therefore:

1
c+1

H‘Pw”?’il(g) < B(@wys Poy)
So if one defines:
Flgw) = [ vrom de, v € (@)
Q
then there exists unique ¢,, such that:
B(uy, 0uy) = Fpy,), forall ¢,, € H&(Q)

As a consequence, for every v; there exists ¢,, such that —Ayp,, = v; weakly. Therefore,
the inner product (-, -) y-1 /o) can be defined in a dense subspace.
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Step IIL: For every v € H}(Q) we calculate:

(Ve&e(u; Q), v & (u+tv; Q)

d
)= i
3 1 . .
= lg% 7 (&.(u+tv; Q) — E.(u; Q)
.1 [« 1
= lim - §2t<Vu, Vo) + [ =Wy(u)v dx

=0t Jq Q€

= /95<Vu, Vo) dz + %Wu(u)v dx
- /Q {—sAu + %Wu(u)} v dx

= /Q {5Au - éWu(u)} Ap, dx

= —/Q <V {sAu — éWu(U)} 7V%>
= <V EWU(U) - eAu} ’V%>L2(Q)

_ <—v-v EWU(U) _cAu

,—V‘V%> '

H-1(Q)
1

_ <_A {EWU(U) - SAU} ’U>H—1(ﬂ)

All of the above allow us to weakly identify:
Vg& = —A

éWu(u) - 5Au}
Therefore, the gradient flow becomes:
Ou=A EWU(U) — 6Au}
This equation is the Cahn-Hilliard equation. If we seek time invariant solutions, we get:
A EWU(U) - eAu] =0

and as a special case, we get Allen-Cahn:

1
gWu(u) —eAu=0 2Au—W,(u) =0

Definition 1.4 (Cahn-Hilliard equation). The gradient flow of the energy functional:
€ 5 1
& (u; Q) = | =|Vul"+-W(u) dz
Q 2 £

where the Gateaux differential is calculated in the (-, -) ;-1 product, gives rise to:

Ou=A EWu(u) —eAu (1.5)

which is the Cahn-Hilliard equation.
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1.4 1-D solutions of the Allen-Cahn equation

In the simple one-dimensional case -with the usual Ginzburg-Landau potential- Allen-
Cahn equation has a simple solution. In fact, this is an indicative profile for many other
solutions, which we will decribe later.

Notice that, to find a solution, it suffices to study Au — W, (u) = 0. Indeed:
2 Au(ex) = Wy (u(er))

is equivalent to:
Av =W, (v) =v* —v

where v(z) = u(ex). Moreover:
(V) = 2W (v)) =20 - 0" — 20" - W, (v) =0

and:
(V)2 =2W(v) +e¢ ceR

To find a solution, set ¢ = 0 and suppose v' > 0. We have:

/

v = —(1—-1?)

1
V2
therefore the (heteroclinic) solution is:

v(z) = Az — xy), %(x) = tanh(z/V?2)

Figure 1.7

Function 7 has some good physical intuition, both due to its asymptotic monotonicity
and due to finite energy.

E(v;R) = /}R%(v’)2 + W(v) dz < 0o

One can show that the only solutions on one-dimension with finite energy are those of
the form of 7, along with the trivial ones +£1.
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Remark 1.5 (Solutions of finite energy - 1—dimension). The only solutions of the Allen-
Cahn equation, with € = 1, of finite energy are v(x) = £%(x — xo) and v = £1.

Proof. As we have already seen, it holds for some ¢ € R, (v')? = 2IW(v) + c. Since
(v')%/2, W(v) > 0, because of finite energy, there must exist a sequence () such that:

x, — 00, v'(xp) = 0, W(v(xg)) — 0
Therefore (v'(xy))* — 2W (v(zy)) — 0, and then ¢ = 0.
Now we consider some cases. If |v(0)| < 1, then:

(1—v*)orv = —i(l — %)

V2

/
v =

1
V2
which shows v = £/ (z — x¢).

If |v(0)| = 1, we consider -without loss of generality- v(0) = 1. Suppose that there

exists some z; such that v(z;) < 1. Until 2; our solution is of the form +74(x — x).
Therefore, a discontinuity must appear at some point on the interval:

(min{xy, 0}, max{xy,0}]

which is contradictory. This shows v > 1. Since the monotonicity of v changes only in
those points where v(x) = 1, then v must preserves its monotonicity. If v is decreasing,
v = 1, while if it is increasing, it is of infinite energy, unless v = 1.

Last but not least, we consider the case where |v(0)] > 1. Again, without loss of
generality, suppose v(0) > 1. If v > 1, we can show as before that v has infinite energy.
Moreover, if a point z; exists such that v(x;) = 1, then from this point forth, v = 1,
while for x < z; function v has infinite energy. N

This one-dimensional solution has a two-dimensional analogue, which we usualy call
the one-dimensional solution in two dimensions. This solution is as follows: We consider
a €S, beR, and we define:

v(z) = %({a,z) — b)

Figure 1.8

This simple analysis serves as a base for many problems concerning phase transition.
First of all, notice that both in 1 and 2—dimensional case the function increases along
one direction for the problem of two phases. Is this a general phenomenon for the two
phase case? This is a question posed by de Giorgi, called de Giorgi’s conjecture, and
has been disproven for dimensions n > 9 (and proven in whole or a weak version for
the smaller dimensions). We will not discuss de Giorgi’s conjecture at all in this thesis.
Another question is if it is possible to construct an analogue for the three phase case.
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In the two phase case, the transition takes place along one direction and the interface
is approcimately a line (which is a minimal object). In the three component case, we
expect solutions having interfaces being minimal cones (these solutions are called triple
junction solutions). We will say a few words about junction solutions in Chapter 2. Last
but not least, by considering the e—problem and its respective solutions for two phases
in 2—dimensions (the 1—dimesional solution on the plane), we see that u. becomes all
the more steeper, as ¢ — 0, and tends towars a characteristic-type fuction of a set with
its boundary being a line. Is it true that the interfaces become approximately minimal
surfaces as ¢ — 0?2 We will mention this problem in Chapter 4.



CHAPTER 2

Junctions

2.1 Connections and junections

As mentioned in Chapter 1, the 1—dimensional (heteroclinic) solution of the Allen-Cahn
equation is indicative for many other phase transition phenomena. For example, if we
change the line interface of the 1—dimensional solution with a minimal cone, we can
probably formulate a similar problem for the three phase case. More detailed analysis
can be found in [2].

In what follows, we consider a potential W : R™ — R which is W > 0 and vanishes
only on a finite set of minima, which has cardinality bigger or equal to 2. Consider a.
two of those (distinct) minima. A heteroclinic connection between a. is defined as below:

Definition 2.1 (Heteroclinic connections). Consider the vector Allen-Cahn equation:
u' —Wy(u) =0, u:R—R™
If a solution of the above equation exists such that:

x1—1>rziloo U(l’) -0k

then u is called a heteroclinic connection between a_ and a, .

To define triple junction solutions, we will use heteroclinic connections parallel to the
walls of a minimal cone interface. We remind the reader of minimal partitions: Consider
an open, bounded set 2 C R". For every partition P = UZN:1 P;, we define the energy:

EP)= Y 0, 7" (0P, NOP))
1<j<N
for some coefficients 0, ; = 0,;, > 0, 0;; = 0. In general, if QO = R", we can define the

energy in a similar fashion, by restricting ourselves in the compact subsets of R":

EPV)= > o0, 7" (OPNOPNYV)

i<j<N
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An N —partition P is called minimising if for any compact set V and any other N —parti-

tion P with:
N

Uwar)cv

=1

we have &(P; V) < &(P;V). Itis a very well known fact that the minimising 3—partition
in R? satisfying the triangle inequality o, < 0, + 0%, @ # j # k # i, is the unique
minimal cone in R?. Therefore, the junction solutions will be defined for the simple triod.
A very concise paper on the general theory of minimal cones can be found in [1].

Definition 2.2 (Triple junction solutions). Consider the unique minimising 3—parti-
tion P in R?, as before. Suppose {a;}i<s is the set of distinct minima of W. A triple
Junction solution v is a solution of the Allen-Cahn equation which satisfies the fol-
lowing estimates.

i. For every x € Py, |u(z) — a;] < CeedH@IR) for ¢ O > 0.
. Given any line parallel to OP; N OP;, dist(x, 0P, N 0F;) = p, it holds:

Jim w(x) = 7%i(p)
T|—0o0
dist(x,@Pman):u

Here dist denotes the signed distance and 7%, ; the heteroclinic connection be-
tween a; and a;.

We emphasise that a triple junction solution u is a stationary object. It is not some-
thing that describes motion, rather it is a balance configuration. In order to examine the
motion of interfaces, one needs to follow some different way, which is either a parabolic
alternative 9,u = e2Au — W, (u) to the Allen-Cahn equation or an approximation by the
motion by curvature flow, as suggested by Mullins.

However, our limiting model is always the triple junction (at least locally) and some
logical conditions, such as Young’s law, originates from this stationary case. In what
follows we describe how Young’s law arises in the study of the junction solutions.

We will use the stress-energy formulation of the equation.

Remark 2.9 (The stress-energy tensor). We define the stress-energy tensor:
1
T; j(u, Vu) = (O;u, dju) — 0; (§|Vu|2 + W(u))

(by | - | we denote the Frobenius norm || - ||r of the Jacobian matriz Ju = Vu). Then the
Allen-Cahn equation can be written in a divergence free form:

VT = (VD) (Au— W, (u)) =0

We note that if T = (Ty,--- ,T,), then we define VT = (VT',--- ,VT,). (The proof
s a simple calculation of each V+T)).
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0,

0
202

Figure 2.1: The junction configuration and the triangle formed by surface tension coef-
ficients.

Theorem 2.4 (Young’s law). Let u be a triple junction solution, as before. We denote
0; = m — 6; and and with o; ; the interfacial energy (of the connection):

1
rig= [ VLGP W (s 1) d
Here 7, is the heteroclinic connection between two distinct minima a;, aj. Then,

Young’s law holds:

sinf; sinfy  sinfs

023 01,3 01,2

Proof. If t; ; is the tangent unit vector of dP; N dP;, we need to prove:
01,21?1,2 + 02,3?2,3 + 01,3?173 =0

Step I: Let our junction centre to be the origin 0. We suppose we have some disc
B, (0) and we use the divergence theorem in each coordinate to obtain:

0= v-de:/ (T,7) dS
B,(0) dB,(0)
In order to establish Young’s relation, we will use the condition at infinity.

Step II: We cosider around 0P, N 0F; a sector S; ; of angle 2p(r), as in the following
picture. We note from here on that -for simplicity purposes- we can assume that 0P,N9P;
is parallel to the y—axis.

Function ¢ is not random and it satisfies rsinp(r) — oo, ¢(r) — 0, as r — oo.
The idea is to compute the integral in the boundary 0B,(0) in parts, which are S; ; and
the complement S¢ = ({J,_; Si ;) in 9B,(0). One can guess that the first three are of
importance. Indeed, by elliptic estimates:

‘VU(JIN < Ce—c-dist(x,aPi)

and we have:

/<T,ﬁ) ds‘g/ 1T - |7 ng/ e~ 2ersinglr) gg 7%
c Sc c
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Figure 2.2
Step III: As for the sector integrals: We write:

/.

for y; = rsinf and yo = rcos . Now, notice that our convergence will follow from the
dominated convergence theorem, as |7; ;| < Ce~v1l, Moreover, for fixed y; we have:

7 sin @(r) dyl

(T,7) dS = / (T, 7)

—rsinp(r)

. cos
]

lim w(yr,y2) = lm w(yr,y2) = %ij(y1)
r—00 Y2 —00
Th_)fgo ay1u(y1, Y2) = ylgﬂoo aylu(y17 Y) = fi;,j(%)

lim Oy, u(y1,y2) = lim Oy,u(yr,y2) =0
r—00 Yo —+00

and by ¢(r) — 0:
lim 7 = (0,1) =1,

T—00

These observations combined give us:

~

1 ~
(Zﬂ)|2 + W(ﬁZ,J(SL’)) dx ti,j = _Ji,jti,j

im [ (T,5) dS = —/ S,

r—00 S. -
]

which concludes the proof.

2.2 Curvature flows of networks

2.2.1 Motion by curvature

The problem of planar networks moving by curvature was proposed by Mullins in 1999,
and has since been proved to be a very useful tool to describe growth of grain boundaries
in polycrystalline material (cf. [4], [6], [7]). In what follows we will describe what
motion by curvature is and how it can be extended to networks. Then, we see how short-
time existence is proved, we see the existence of expanding networks and we examine
how they converge to some limiting networks provided (space) restrictions exist.
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The scheme is that, starting with a curve X(0, s), we can move it by curvarture,
following the vector xn. This leads to a family of functions, X (¢, s), parametrised by ¢,

that satisfy the equation:
0X

ot
Variable s is arc length and it depends on t. If we use the Frenet-Serret formulas 0, =
kn (where t = 9,X), we can obtain the other well-known form of this equation:

= r(X)n(X) (2.1)

0X 9’X
ot 0s?
which is not the heat equation, because of that dependence of s on t. However, some reg-

ularity results still hold. Equations (2.1) and (2.2) are called curvature flow equations.
In normal velocity form, we can take the inner product (-,72) on (2.1) to obtain:

0X A> N
V= <E,n = (kn,n) = K

(2.2)

or, using signed curvature:

(where i, = e3 x t and &, is the signed curvature). It is often times useful to consider
uniform intervals, say I = [0, 1], to define these equations, since arclength is changing
with time. Then, by computing:

1 9 0.X  PX|0.XP — 8, X(92X,0.X)
10,X| 07 |0, X| 10, X|*

KN =

we obtain:
8_X B 02X |0, X)? — 0, X(92X,0,X)

ot 10, X"

(2.3)

Definition 2.5 (Curvature flow equations). If X(¢,s) is a family of curves para-
metrised by t and if s denotes arc length, then the curvature flow equations are:

0X - 0’°X
W = H(X)?’L(X) = 832

or, in normal velocity form:
V=g V, =k,

A simple example of curvature flow is the contracting circle: Suppose we have some
circle X(0,s) = 0B;(0). Motion by curvature gives a family of functions X (¢, s), which
are all circles, that converge to a point in finite time. Indeed, it is easy to check that they
are all circles, with decreasing radii » < 1; then notice that:

dA <8X A>
L G (N 40 = —2
dt /X ot /X'{" g

by Hopf’s Umlaufsatz, which shows that A(t) = A(0) — 27t and in turn ¢ < A(0)/27.
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The following very useful lemma indicates that curvature flows are, in some sense,
gradient flows of the length functional. Similar formulas are used often in the study of
networks.

Lemma 2.6 (Variation of the length). For any family of curves X(t,-), parametrised by
t, which moves by curvature flow, there holds:

0L (X(t,-))
dtg (X)) = —56a)
We have:
LX) L [ Xt s) + 20, (57)| — |0.X (1. 8)] ds
o(kn) e20E Jx(t,)
_ll—rfcl)e/ \/1+253Xﬁ8n>+0(52)—1d3

and by the Frenet-Serret formulas 9,7 = —k|9, X|t:

e—0 g

—2
:/ i ds
Xt 2
= —/ k2 ds
X(tz')

J = lim - / \/1—25/<2+052)—1ds

]

Since curvature flows can be viewed as the gradient flow of the length functional,
they can rightfully be called curve shortening flows.

2.2.2 Motion of networks

Curvature flows are not enough to describe the full picture in boundary motion in poly-
crystalline material. The main issue is the existence of non-smooth points (angles) in
interfaces, which disrupt curvature flow. Intuitively, imagine two curves such that in
their union point the curvature vectors do not match. Then, one curve tends to move
away from the second and the second from the first, leading to discontinuity.

We resolve this issue by modifying the curvature equations, by adding conditions.

First, we define some basic concepts, for networks for equal surface tension coefficients

o;; = o (without loss of generality, o = 1).
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Figure 2.9

Definition 2.7 (Networks). Suppose 2 C R? is smooth, convex and open. A net-
work N in Q is a connected set constituted by a finite family of reqular C'—curves
contained in Q0 such that:

1. All curves are simple.
1. Two different curves intersect only at their end points.
vit. A curve intersects OS2 only at its end points.

w. If an endpoint of a curve coinsides with some P € 0, then no other end point
of any other curve can be P.

A multipoint OF of multiplicity n is any point OF € Q at which n—curves meet. We
denote the end points on S by P*.

Figure 2.4

In what follows we are interested only in the so-called regular networks. Moreover,
we will use the following notation:

i. If // is a network, with X* we denote its curves.
ii. With XP*, k € {1,2,3}, we denote the curves that pass from multipoint O?.

iii. In general, indices k will denote the different curves, so for example t* denotes the
tangent vector of X*.
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Definition 2.8 (Regular networks). A network N is called regular if all its multi-
points are triple and the sum of the unit tangent vectors of the concurring curves at
each multipoint is 0.

Z?“ =0, at every multipoint OF

k<3

The geometric problem is to find some curvature flow such that all triple points of
the network do not break. In fact, some appropriate conditions must be chosen a priori
in order to prove the existence of such a flow at a first level. Some more general results,
concerning short time existence with general initial data can be found in [35].

Definition 2.9 (Admissible initial data). 4 network S, is admissible initial data for
the curvature flow if:

. It is reqular.
1. At every multipoint the sum of the curvature vectors is 0.

1it. The curvature on each end point on 052 is 0 (and therefore no motion exists on
the boundary).

iv. Each curve can be parametrised as an regular C>*—curve, a € (0,1).

By this notion of initial data, we also define the solution of the curvature flow.

Definition 2.10 (Solution of the curvature flow - Networks). Let /g be an admissible
inital network. A family N;, parametrised by t € [0,T), is a solution of the curvature

flow if:
i. Every X* can be parametrised in a C'T%/22+2([0,T) x [0, 1]) and reqular way.
1. The following problem is solved:

vi.a. We have motion by curvature:
Vk = <ath(t7 ')7 ﬁk> = Kjk(t )

i1.b. The concurrency condition holds: XPE(t,.) = XPA¢t,-) at every triple
point OP.

vi.c. The angle condition holds:

ka = 0, at every triple point O

k<3
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it.d. Dirichlet boundary condition: X*(t,1) = P*.

The intuition behind the angle condition lies in the following lemma:

Lemma 2.11. Let there be a triod N = T in Q. We suppose X*(0) coincide and we
consider some variations W*. Then, if M is the e—variation of N :

LMY =D LN (XF + V)

k<3

and by some standard computation and integration by parts:

) Z/ AN de— 3w 0), 7

k<3 k<3

If we want the boundary term to vanish, we must impose the condition:

Z(\Ifk(()),?“(O)% for every ¥ = Z%%(O) =0

k<3 k<3

As an important remark of the previous lemma, the importance of the angle condition
lies in the formulation of the curvature equations as the gradient flow of the length
functional.

For the more general case, where phases with different surface tension coefficients
are present, we use the following notation:

i. If W is a network, with X%/ we denote its curves between phases i and j.

ii. With XP% 4 5 < 3, we denote the curves between phases i,j that pass from
multipoint OP.

iii. In general, indices 7, j will denote the different curves between phases i and 7, so
for example "7/ denotes the tangent vector of X*J.

The generalisation of curvature flows to the anisotropic case is made by considering
the gradent flow of the energy functional (weighted perimeter).

Z 0i; L X”

1<j<3

The basic conditions in anisotropic networks, such as concurrency X747 (¢, -) = XPHi(t,-)
at OP, the Dirichlet boundary conditions, et cetera, remain the same. However, the equa-
tions and the angle conditions change, to take into account the existence of interfacial
energy. As far as the equations go, the correct law is that of:

NT) G -
Vi :< p ,nh :Uij’#’j




34 Chapter 2. Junctions

Lemma 2.12. Let there be a triod N = T in Q. We suppose X" (0) coincide and we
consider some variations V. Then, if M is the e—variation of N :

(M) = 01, LN (X + )
i<j<3
and by some standard computation and integration by parts:

(5%(./’/) 5,5 /\[y6d T %, N
SW - — Z /X” O; iR ]<\IJ ],n ]> dl — Z O'Z'J‘(\I’ ](O),t ]<O)>

i<j<3 1<j<3

If we want the boundary term to vanish, we must impose the condition:
> 0 ((0),89(0)), for every T = Y 0, 47(0) =0
i<j<3 i<j<3
This suggests that the correct angle condition on the multipoints / junctions is the
expected Young’s law.

These anisotropic network flows are actually part of an even more general kind of
anisotropic flows, as presented in [36] and [34]. An anisotropy is a function ¢ : R? —
[0, 00) which is convex and:

P(AE) = [Ap(&), p(&) = clél, AeR, £ €R?, >0
The dual of ¢ is defined as:

o

#(&) = max (&)

Then, one can define the anisotropic energy (or p—length):
8= Y [ @
1<j<N /X

where ¢; ; are anisotropies associated to each phase boundary. By assuming ¢f, <
©?; + 5, the angle condition is again a generalised form of Young’s law:

> RV,(AM) =0
1<j<N
where R is a w/2—rotation. The motion by curvature equation is:
Vi = (0,X%, 7%) = o (7" (Hess o, (3")F, F9) '

Remark 2.13. In our case, we might take p; ;(§) = agj.1|§|, and then ¢f ;(§) = 0i;|¢],
VSO?,J'@) = Uz’,jg-'

Ep(N) = Z /X 0y dl = Z o ; LX)

1<j<3 i<j<3

Moreover:
_ o (G _ o2 3
0= E RV (n") = E o jRn"™ = E o, it
i<j<3 i<j<3 i<j<3
and:

Vi = o0 (709 (Hess ¢, (%), 1)t = o2 ki
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2.2.9 Short-time existence for the curvature flow of networks

Note that the C1te/22+a ¢ondition is what was first studied, however the more natural
choice of C''? is enough to prove short-time existence.

The proof of short-time existence for equal surface tension coefficients o7 ; = o is a
standard procedure, which is based on some results of Solonnikov [27] (see also [38]).
For general surface tension coefficients -that is, for the anisotropic problem- some work
has been done too, for example in the directions of Kroner, Novaga and Pozzi [356], and
Bellettini and Kholmatov [354]. The short-time existence results in those two previous
references are based on the same linearisation and fixed-point arguments as in the equal
surface tension coefficients case.

In what follows we describe how the short-time existence of the motion by curvature
on networks is established for the case of equal surface tension coefficients. First notice
that, under some suitable reframed curvature flow, we can write:

%_f — R(X)A(X) + AX)E(X)

and to have some non-degenerate equation, we can choose (in view of (2.3)):

1

_ 2 N\
to obtain:
Bt |0.X|? &

Definition 2.14 (Admissible initial parametrisation). We say that a parametrisation
o = (p' -+ ") of an admissible initial network Ny (composed of n—curves) is
admissible if:

i Uy 0°([0,1]) = A
ii. Each o* € C2 is reqular.
iti. Concurrency: pP* = pPt, at each junction OP.

w. Angle condition:

p,k
Z BL =0, at each junction O

v. Curvature condition:

Oz ™! 2P d2pP7 .
0, 0P (02  [0pbd at each junction O

vi. Dirichlet boundary condition: At the endpoints ©*(1) = P*.

vis. Curvature at the boundary: We have 920" (1) = 0.
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Theorem 2.15 (Bronsard-Reitich). For any admissible initial parametrisation there
exists some radius R > 0 and some time T' > 0 such that the following system has a
unique solution in C*+*/222([0,T) x [0,1]) N Bx(0). For k < n:

1. We have motion by curvature:

oxX* X

ot |0, Xk

ii. Concurrency at each junction OP, XP* = Xk,

1it. Angle condition:

Z 9, = 0, at each junction O

19 Apok|
= 8 |

iv. Dirichlet boundary condition X*(t,1) = P* at the endpoints.
v. Initial data X*(0,2) = ©*(z).

Proof. The sketch of the proof is demonstrated in several steps. We note that, by the
parabolicity of the system and the “local” formulation around each junction, we can
restrict ourselves in the case where the initial parametrisation is a triod T.

Step I: First of all, we fix some admissible data Y = (Y1, Y2, Y3) and we linearise the
system around Y. That is, if we set Fu = dyu — 0*u/|0,ul?, we write:

F(u+ev) = Fu+€6—F + O(e?)

v lu
and by some straight-forward calculations:
OF v O2u
—| =0w— = Oy, O,
50 b = % ol T 2o |4< v, 0z)
If u+ecv~ X5 u~ YFE:
2Xk 2yk 2yk
F(X*) ~ 0,X"* - 0 X" 5 0 +2 O (0,Y" 0, X")

1% Sl S (V% S I U

For well-posedness, the relevant information resides in the higher order term, and this
is why we will not consider the term with 0,.X.

The other conditions, that being concurrency and Dirichlet boundary conditions, are
linear, except the angle condition. Similarly, a linear version of it is:

0. Xk 9, X* 1 1
2oy~ oy N0 = 2\ ) X

oYk
+m (0, X", 0,YF)
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The associated linear system is:
/ k
O X* — % = f*(t,x)
X1(t,0) — X2(t,0) = X1(¢,0) — X3(£,0) = 0
k k
Yy T DO, X1, 0), 0,YH(2,0)) = b(t,0)
XF(t, 1) = P*
| X5(0,2) = ¢ (x)

In order to show that there exists a solution of this system, in view of Solonnikov’s
standard theory (cf. [27]), one needs to show that some complementary conditions hold.
It is though easier to use another fact, that these conditions can be replaced by some
Lopatinskii-Shapiro condition, which is defined below:

We suppose A € C, R(\) > 0. The Lopatinskii-Shapiro condition for the linearised
system is satisfied at the triple juction if for every solution of:

o2xk
AXF — G = 0
X1(0) — X2(0) = X2(0) — X3(0) = 0

k
S B + 20 (0, X5(0), 0, YH(0)) = 0

such that |X*| — 0, as * — oo, is trivial. Notice we have “frozen” variable ¢ and
instead replaced 0; by the “spectral” parameter A. The Lopatinskii-Shapiro condition
is verified by projecting the first (motion) equation to |92(0)[(X*, 7n*(0))7n*(0) (similarly
to the same expression with tangents) and using the concurrency and angle conditions
(the remaining equations, that is).

Step II: For T' > 0, we define the map Ly : S — &1 between spaces:
Sp = {X € CT22e ([0, 7] x [0, 1] R®) | X(t,0) = X*(,0) = X3(,0)}
Gr = {(,(b,c),v) € C22([0, ] x [0, 1;R®) x C}/***/*([0, T]; R*) x

x C>%([0,1];R® | linear compatability conditions hold}

by:
0X" - \a Yk\? ‘ k<
k
Lr(X) = =~ ks Sk — pevmian (O X’“(t 0), &.Y*(t,0))
' X(t,0)
X(0,z)

The problem now is to define some proper operator so that X is a fixed point. Then
existence and uniqueness will follow from Banach-Caccioppoli theorem. In this direc-
tion, we define Ny = (N, No, X(0,)), which contains all the information of the non-
linearities of the problem:

Ny : 8P — 09290, T] % [0,1];R%), X — f(X)
Ny = 87— ¢ ([0, T RY), X = (b,¢)(X)

where $27 = {X € & | X(0,z) = p(z), X*(t,1) = P*}. Then, X is a solution if and
only if X € &2 and:

Lr(X) = Np(X) & X = L' Np(X) = Kr(X)

It can be shown that K is a contraction, which concludes the proof. O
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This establishes the proof of a parametric solution of the curvature flow. To deal
with the geometric problem, we shall consider the case of the triod. Notice that the
notion of the geometric solution is as in Definition 2.10, and the starting network is an
admissible initial network rather than an admissible initial parametrisation.

Lemma 2.16. If in a junction structure curves X', X2, X* meet, then:
R+ AT = 20 4 — R AT
is satisfied if and only if Y, o k¥ =37, S A" =0.

Proof. If k'i' + X't' = k777 + X1/, then we can multiply these equations by 7%, 7i*, and
by using the angle condition at the junction:

N = AL /3t 9

No= X2 - /3R 2

Ki = — kit /2 —V/BNITL/2

K= — 12 /3N

(of course the convention is that the indices are considered modulo 3). The solution of

this system is:
i—1 _ it i1 yi—1
) KT — K : A - A
N=———— and k'=

V3 V3

from which the lemma follows. ]

Now, the relation between admissible initial networks and admissible parametrisa-
tions is encapsuled in the following lemma.

Proposition 2.17. Let Ty be an admissible initial triod, parametrised by Y =
(Y1, Y2 Y3). There exist smooth functions 0 : [0,1] — [0, 1] such that reparametri-
sation:

0=Y'00"Y?*00* Y00

18 an admissible initial parametrisation.

Proof. We need to check every condition in Definition 2.14. The ones in i., ii., iii., vi. are
automatically satisfied.

As for iv., this is true for any ¢, since it involves the unit tangent vectors, which are
invariant under reparametrisation.

As for v.: We define (compare with (2.4)):

1

A= .
’81901|3

(020", 00"

and we have that the curvature condition becomes:

11 171 22 22 .33 373
R¢n¢+A t@—ﬁ¢n¢+)\ tv—/ﬁwnw%—)\ t,
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All of the appearing geometric quantities are invariant under reparametrisation, so the
dependence on ¢ can be omitted in all terms except A’. We can then utilise Lemma 2.16
to see that we must have:

>w=

3 3
k=1 k=1

A'=0

As for vii.: The condition 92¢*(1) = 0 at the endpoints can be equivalenty written
as kN’ + At = 0. This is satisfied if ' = A’ = 0. We have now reduced the problem to
finding reparametrisations #° such that:

NE
pi@.
I
]
>
I

0 (at the junction) k' =\ =0 (at the endpoints)

Since in the endpoints 0, 1, we have 6°(0) = 0, §(1) = 1, we get:

N = G 080
1
:_az|ank00i“|azei| 4
- e 0+ G
' 201
=Nt G

In the end, one can choose smooth functions (say, polynomials) such that 9,6"(0) =
0,0'(1), 020°(1) = — N |9, X?| - |0,0%|* and:

A i—1 i+l
02601 (0) = (u _

x‘) 0. X| - 18,6
7 X ) 10:X7] - |0:6"|

O

All of this work enables us to prove existence and uniqueness of the solution for the
geometric problem.

Theorem 2.18 (Geometric existence and uniqueness). For the admissible initial triod,

there exists a geometrically unique solution of the curvature flow in some time interval
[0, 7.

Proof. First of all, Proposition 2.17 guarantees that there exists an admissible initial
parametrisation of our triod Ty. Moreover, by Theorem 2.15 we know that there exists a
unique solution X = (X!, X2 X?) in some time interval [0, 7}]. This gives us a network
Ty, t < T7.

Lets suppose that there exists another solution X = (X', X2 X?) in some time
interval [0, 73]. This gives us another network T;, ¢ < T». We aim to show that T,

and T; coincide up to some positive time, which can be restated as that X coincides with
X up to reparametrisation.
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We let F : [0, T3] x [0,1] — [0, 1] be C'+2/2:2+a_reparametrisations. By considering
X(t,z) = X'(t, ¢'(t,x)), we have:

0, X (t, o)

—k 2XE(t, k) > -
X (to) = ( =T TR 7)) AR (L o) + AR (L o) e
WX (t ) < (£, ") ) W2 (2, %) + A%( s@)‘asz(t,ngH

|0, Xk (t, k)|
+ 0, X (t, VOt (8, )

We now ask for ¢* to be solutions, in some time interval [0, T}] of the following quasi-
linear partial differential equation:

3 1 2XF(t, %) 9, XH(t, oY)
_@mew<@Xmef@Xme>
_ e 02" (t, @)

0, XK, o) 10, Xk(t, )2 - |0,k (8, )2

8t<10k<t7 3:)

such that ©*(¢,0) = 0, p*(t,1) = 0, ©*(0,2) = z and 9" (t,z) = 0. The existence
of these kind of solutions follows from some standard theory of quasilinear parabolic
equations, in [24]. In the end, we obtain:

< 621(’“(15, Sok) ﬁk(t7 gOk)> ﬁk(u Spk)

10, Xk (t, k)2
D2XE( o) 0 XE( )\ 9. X"(t, ")

<@Xmef@§mmw>@XwWw
02k (t, 2) 0, X" (¢, ¢*)

0. XK (t, k) |2 - |00k (t, )2

_ BXMbGY | B 2)0 XAt )
[0 XE(E, M) 2 [0, XE(E, )2 - |0pph(t, )2

Xt )

0. X" ()2

OX"(t,x) =

By the uniqueness of Theorem 2.15, we conclude that X* = X" in some time interval
[O, T], T = min{Tl, TQ, T4}.
O

2.9 Angle conditions for expanding, contracting and sta-
ble networks

In what follows we present some remarks on how the interface forms certain angles in a
certain anisotropic case. There are two cases (three in fact, but the intermediate case is
trival) that are going to define the interface’s shape. To have some geometric intuition,
the general problem is of Steiner-type with some motion by curvature attached. Sup-
pose one has a juction structure and -by force- injects some fourth material in between
the other three. We expect that three simple configurations can appear, that of elliptic
(convex), hyperbolic (concave) and euclidean triangles.
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A

Figure 2.5

Remark 2.19. Inside some disc Br(0), let 0o, o be the surface tension coefficients of the
triangle T and junction J. Then J is prefered if o < \/30¢ and T is prefered if o > \/30y.

Proof. This is just a geometry fact, as is indicated below. It is simple to see that DA =
DB = DC = R and AB = BC = CA = /3R, so the energy of the juction is 30 R and
for the triangle 3v/30,R. O

An important lemma follows.

Lemma 2.20. Suppose we have some junction structure inside Br(0), with materials 1,
2, 3 and surface tension coefficients o; ; = 0,1 # j < 3. We inject material 4 right on the
Junction’s triple point, such that the surface coefficients become 04; = 0,4 = 0o. Then:

i. If 0 < /300, then in the interface’s cusps appear angles 3 such that 5 > /3 (see
Figure 2.6 (a)).

ii. If o > /300, then in the interface’s cusps appear angles (3 such that 3 < /3 (see
Figure 2.6 (b)).

(a) Case o < v/300. (b) Case o > v/30y.

Figure 2.6

Proof. We will see i., as ii. is similar. By Young’s law, we have:

sin sin sin sin o
p _sing  sinf S p_o <3
o 0o o sing o0y
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and by 2m = 2p + (3, sin § = —sin(2p) = —2sin ¢ cos . But then:

3 5
—2c0sg0<\/§:>cos(7r—<p)<§:><p<§:>ﬁ>g

]

Considering closed curves, it is a general procedure to calculate the enclosed area
to compute short-time existence. For this reason, we will need the following theorem
of Neumann and Mullins, which is similar to Hopf’s Umlaufsatz for piecewise smooth
curves.

Theorem 2.21 (Neumann-Mullins law). Let v be a simple, piecewise smooth curve on

the plane. Then:
//@,d@zQﬂ—Z@i
Y

where 0; are the external angles, one on each sharp point of .

Proof. By cutting a small region around each sharp point, we can replace it with an arc
of angle w and radius r, as in Figure 2.7. This forms a new curve v* without sharp points,

QX

Figure 2.7

and Hopf’s Umlaufsatz can be applied. Notice that these cuts can be made arbitrarily
close to each sharp point, and as a consequence we can assume the black four-sided
shape is approximately a kite. We can also assume, by this principle, that:

/ Ky dl ~ / Ky dl
~v\arcs 107
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for some arbitrarily small error. We have:

/ Ky dl =21
o

Now, a simple observation shows a = m — w and § = w, so by integrating on the arc we

obtain: )
//fgdéz—wrzwzﬁ
arc /r

Therefore, if w; are the arc angles and 6; their respective external angles, we get:

QW:/HUcM:/ /fgd€+29i
y* ~v\arcs

]

Remark 2.22 (Expanding, contracting and stationary networks). We can calculate the
change of area enclosed by the triangle formation under curvature flow. Suppose A(t) is
the area enclosed by X and write:

dA <8X,\> B B 2/
T /X 8t’na dl = /XVUCM— oh Xﬁgdﬁ

Now, by Theorem 2.21:
dA
dt
where = 1 — 3 (see Figure 2.6) and dA/dt = = — 36. If 0 < \/30y, then B > 7/3 and

A decreases at a constant rate. In fact, it disappears right at:

1 A®0)

:03‘3B—7r

(—27r + Z Gi) ot = (=27 +30) o}

Similarly, if 0 > \/300 then 8 < 7/3 and A increases at a constant rate. The interme-
diate case, where A remains stationary, is trivial.

2.4 Motion under constraints

Suppose -for context- that the whole flow takes place in a bounded region (say, a disc).
After some expanding network hits the boundary, we expect the extremal points to stop
moving, thus we must have curvature flow with fixed boundary conditions. Such a flow
isn’t guranteed to exist, when curvature does not vanish on the boundary.

One way to prevent this collapse is to demand for the curvature to vanish on the
boundary. That is, we consider:

0X

V= <E,n> :O'(Q)H(X) (26)
with x vanishing on the boundary. For the sake of simplicity and without loss of gener-
ality, we will omit oy from our calculations.

Remark 2.29 (On short-time existence and regularity). Short time existence for quasi-
linear parabolic partial differential equations is not an easy task. We refer to [24] and
our previous analysis. From now, on we will assume existence and sufficient reqularity
wn all of our calculations.
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D o

Figure 2.8: Junction collapse

It is quite useful and generally easier to work with curves that can be parametrised
as a graph (z, f(¢,2)), say above interval [0, 1], such that f(0) = f(1) = 0.

Remark 2.24. If X(t,z) = (x, f(t,x)) can be parametrised as a graph, it holds that:
of _ 0if

ot 1+ (0.1)? (2.7)
Proof. We write:
0X . ~
yri rR(X)N(X) + AMX)H(X)
for some function A to be chosen. In z—coordinates we have:
0> AMX
O 0f) = —2L (o, + 2251 0,5
V14 (0,1)? 1+ (0:f)
and by demanding 0,z = 0 it follows that:
2
AxX) = e %l
V1+(0:f)?
Coming back to the original equation, we obtain:
of __ 0if
ot 1+ (0.f)2
O

First of all, there is this very general theorem, which shows -possibly for a subsequ-
ence- some good (C1%—)convergence towards geodesics. For its proof we need the fol-
lowing lemma, which is a maximum principle.

Lemma 2.25 (Maximum principle). Let X (¢,z) = (x, f(t,x)) (defined on [to,00) x I) be
the graph of a function f. Define:

ox(t) = mEaX<X, ey) = max f(t,x) and Ys(t) = mzin<X, ey) = rnzin f(t,x)

with 3 being a subinterval X C I. Then ¢y is non-increasing and s, non-decreasing.
Similarly, if:

oxn(t) = max 0.(X, e9) = max Ouf(t, ) and Px(t) = mzin 0.(X, e9) = mzin 0. f(t,x)

then o, is non-increasing and s, non-decreasing. For general curves X, we also have
that | X | is non-increasing in time.
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Proof. The proof is done in steps, first starting from the graph case and then treating
the general case.

Step I: We will work only with ¢y, since ¢y, is similar. Consider ¥* C ¥ the set of
critical points of f such that 9?f < 0. Then:

px(t) = max(X; e;)
and by differentiating:

d X
% = max <8_ > = max(k(X)n(X), e2) < max kK = max

oz f
875 , €2 23 X 0

= = = V1 (0:])

Step II: As for the @y case (Uy is similar), by differentiating and by restricting
ourselves to X*, the set of critical points of 0, f, we obtain:
dos _ { 0. f
= ma

dt T+ .02 O(aif)} <0

(Since @2 f < 0 and 9%f = 0 on T*).

Step III: For the general case, consider the set 3* of the most distant points of X
from the origin. Considering the tangent ( on each point on ¥*, we can parametrise
locally X as a graph above a line parallel to (. Then, using the graph case, each point
of X* does not move farther from the origin.

Figure 2.9

Theorem 2.26 (Motion towards geodesics). Suppose we have a family of curves
X(t,-), parametrised by t, which moves by curvature flow, as above. There exists
a sequence of times (t;)2,, t; — oo, such that:
Cl,a
X(T+t;,) — v
almost everywhere in an arbitrary interval T € |1, 71|, for every a < 1/2, where vy

1s a geodesic. The bounds and the convergence results persist under a possible graph
reparametrisation (z, f(t,x)).
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Proof. We will work in several steps.

Step I: The change in length, as in Lemma 2.12, is:

L oprix(,)) = —/ K2l <0

Therefore, £ (X (¢,-)) is decreasing and it has a limit. It follows that if for any 7o, 71,
if t — oo:

t+11
LUK+ 7,7) — LXK (E+79,)) = — / W2 dldr
X(Tv')

t+70

= — / / k2 dbdr — 0
0 X (T4+t,)

Choose a sequence of (¢;)°,, t; — oo, such that:

T1 1
/ / k2 dldr < —
To X(T+ti,-) 2

so this following sum converges:

00 ol
Z/ / k2 dbdr < oo
i=1 Y70 JX(T+ti,)

Then, by monotone convergence:

1 ©©
/ Z/ k2 dldr < 00
T =1 X(m4t;,)

%
Hence, for almost every 7 € [rg, 7]

[e.9]

S R
X(T-‘y—ti,')

=1

/ K2 dl 220
X(T+t¢,-)

for almost every 7 € [rg, 71]. We then expect in the limit that the curve has x = 0, which
means that it is a geodesic.

which means that:

Step II: Considering all Z* (X (7+t;,-)), i € N, this constitutes a uniformly bounded
family for almost every 7 € [ry, 71]. By using Lemma 2.25 and parametrising by arc
length:

/|X(7’—|—ti,s)|2 ds < max(|X|)LHX (T +t;,-))

and: )
/ agX(T—l-tz,S) dS:.fZl(X(T‘i‘t“))
5| 0s
Moreover:
2 2
/—2X<T+ti,8) ds—/ﬁds—/ x* dl
s Os s X (T+ti,)
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All of the above show uniform bounds on (2,2)—Sobolev norms. In order to have the
same domain, we consider the change of variables s = ¢'3, where ¢ = LY (X (7 +1t;,")).
This leads to interval [0, 1] and similar uniform bounds persist.

Step I1I1: In Step I1I we showed uniform (2, 2)—Sobolev bounds for the family X (74
ti, 1), i € N, for almost every 5 € [0,1]. Utilising this bound for each coordinate, we

obtain that possibly for a subsequence:
X(T4ti, b)) —= 7
W22

for some function v. Since 1 < 2-2 = 4, by Theorem A.5:

X (74t 00 S o

T

for every a < 1/2. In particular, along with 92X = 0, 92X = 0%y, we have that
02y = 0 weakly; then 0,7 is constant, which shows that v is a geodesic.

Figure 2.10: Convergence towards the triangle.

Step I'V: We can show Hélder convergence in x—variable too, under possible graph
reparametrisation. Notice we have already shown that z(¢.3) converges in the (1,a)—
Hoélder sense, and we need to do the same for its inverse ¢:5(x), or simply for s(z).
We show that 0,s is a—Holder, and to show that s is too, follow a similar but easier
procedure. Notice two things, first that d,s = 1/0,x, and second that near the limit we
have [0sz| > ¢ > 0 (by convergence to line segment 7). Moreover, |0,s| < 1/c. Now we
write:

0p8(21) — Ops(12)| = 85561(51) B asg;l(SQ)

_ |0sx(s1) — Os(82)]

|0sx(s1)0s2(82)]
Sl0.a(s1) — dur(s)
M

2 s(r1) — s(xa)|"

N

N

By the mean value theorem, we conclude:

M
] = 105l — ol
M

< 0—3‘1’1 — Zo|*

These show that z(s), s(x) are C*—diffeomorphisms (and in fact their norms can be
uniformly bounded). ]
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Remark 2.27. Consider the graph case. By the maximum principle, we know that || f||
as well as ||0, f|| L= do not increase. In fact, the proof of Lemma 2.25 shows that, starting
from any arbitrary time ty > 0, those maxima do not increase. Since for a sequence of
times (tg)pq, ty — 00, we have ||f(T + tg,-)||cr — 0, then for any T+t < t:

F@ e < F(T+ e )l

and then ||f(t,)||cr — 0, as t — oc.

Figure 2.11

Proposition 2.28 (Motion towards the triangle - The graph case). Suppose we have
a starting network Ny, which is smooth and regular, with three junctions. We pros-
tulate that each arc is a graph on the corresponing sides of a triangle I, formed by
the junctions as vertices. Keeping each junction point fixed, under curvature flow we
have smooth and exponential convergence:

02,6
Xt CL T, 5e(0,1)

t—o00

towards triangle I, in each closed subinterval. That is:
X (t,) = T ||2s < C(max |9, X|,0,d,e)||X(t,) = T || < Clo—clt—2)

where d = dist(1, [0, 1]), £,0 € (0,1). Moreover:

||X<t, ) — to/‘||c,t1’-;5/2,2+5(§) < C’(max ‘8mX|, 5, d, 6)||X(t, ) - 9"L§?T(Q)

for parabolic cylinders @ € Q with d = dist(@, Q).

Proof. This proof will be done is several steps.
Step I: We first we will establish some W!2—bounds. We define:

&(t) = /Ol(agcﬁ2 dz

and by differentiating:

d&

1
rr :/0 20, f0u1f dx
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Now we use integration by parts and the boundary conditions of f to get:

d€ L@y '
W= e s @ &9

Step II: The general idea now is to use Poincaré’s inequality to bound & by its
derivative, and then obtain some estimates by Gronwall’s inequality. We observe that
f(t,0) = f(t,1) =0, £, 8, f dz = 0, and by (2.8):

Cd&

1 1
%ﬂ=/W%ﬂ%m<C/ﬂ%ﬂ%m<____
0 0 2 dt

By Gronwall’s inequality:
&(t) < &(0)e /¢

Poincaré’s inequality can by used again, since f(t,0) = f(¢,1) = 0, to get:

1 1
/|ﬂQMN§C/QMJde<C%mﬁ4W7
0 0

‘We conclude that:
1 £l < Moe "¢

and by Sobolev embeddings:

1 llze < fllene < Ml fllyppe < Mae™/€

Step I1I: Having L>°—bounds and assuming sufficient regularity, in view of some re-
sults of the type of LadyZenskaja-Solonnikov-Ural’ceva [24] (¢f. Theorem A.9), Schau-
der estimates follow in each parabolic subcylinder. We use a simple trick in order to
achieve these estimates up to the boundary.

We consider the following problem, which has f as a solution:

%—a@@yg 1
ot " 92 , where a(t,z) = ————
g(t,0) = g(t.1) = 0 L+ (0:1)?

We can extend this problem to a bigger interval, [—1,2], by an odd reflection. More
specifically, we define:

g(t,z) = —g(t,—x) forx € [-1,0] and g(t,z) = —g(t,2 — ) for x € [1,2]

[
VN

Figure 2.12: Function g extended by odd reflection.
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Now consider some appropriate parabolic cylinders @ € @ such that the x—projection
of the smallest is [0, 1], as in Figure 2.13. Then, by some Schauder estimates:

HgHCtl’I‘;/Q*Z*‘;(a) <C <mIaX ’axf(t =0, )|7 57 d) HgHLfoz(Q)a 0 € (07 1)7 d= dlSt(éa Q)
and since g‘@ = f’@ HfHLng(@) = HQHL;‘;(Q):

|‘f|‘ot1;5/2,2+5(§) < C <II13X ]&,f(t = 0, )’, 57 d) HfHLtool(é})

Q

Figure 2.13

Step I'V: By shifting our original problem to have starting time t, — ¢, we repeat the
above arguments and we get:

Q

tg — €

Figure 2.14

Hf”cjj‘s/"’v“‘s@) <C (mf“X 0. f(t=0,-)|,9, d) “f“Lgﬁz(Q)

for parabolic cylinders Q € Q, starting from ¢t = ¢y and t = ¢y, — € respectively, as in
Figure 2.14. We obtain:

||f||C§’5(§m{t:t0}) < |’f||ct1:5/2,2+5(§) <C (mﬁx |E)$f(t =0, )|, 0,d, €> e~ 2(to—e)/C
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Notice that d = dist(@, Q) already contains the dependence on £; however, if we rewrite
d=dist(QN{t =to},QN{t =1}), this dependence on £ must appear explicitly.
N






CHAPTER 9

Yortices

3.1 The smooth potential case

9.1.1  Periodic minimisers (1-D case)

We note the usual notation / convention of analysis, of S!: By writing S' we mean either
that the function really has domain the circle, or that it is 2r—periodic in R. It is not
difficult to see the duality between functions u : S! — R? and v : R — R? that are
2m—periodic.

Without a doubt, the simplest smooth case is the one of one dimension, v : S! —
R? = C, with zero weight fo% v dt = 0. The reason we study 2w —periodic functions is
to overcome the usual trivialities of the calculus of variations. In minimal suface theory,
it is absurd to ask for a global minimiser, since then a degenerate case -a singular point-
would be the appropriate “minimiser”. In our case, a non-degenerate global minimiser
does not exist either. Indeed, we cannot minimise the energy over all R, except if R = 0
or |u| = 1. If R =0, the problem is trivial. We then have to impose a condition on v.

Considering only 27 —periodic functions, we define:

2m 1 . RQ
Bn(v) = Enlo:8) = [ WP+
0

(1 —[vf*)* dt

Notice on the right side the Ginzburg-Landau potential W (v) = 1(1 — [v[*)? . Since this
is a smooth case, it is possible to produce an equation that describes the critical points
of &g, using the usual process with the first variation (as in Section 1.1). We consider
p € C°(S; R?) and we compute:

5% : 1 27T1 / / ! R2 2
%:}}_{%g/o 5 (10 + e P = 1/)) + 7 (1~ (ute9)’)” = (1= w)?) at

2m
—/ (V" = R*(Jvo]> = Du, ) dt
0
and from the criticality condition 6& /d¢ = 0 follows the 1-dimensional Ginzburg-Landau

equation:
v — R*(Jv]* = 1)v =0 (3.1)

Several periodic solutions exists, for example those on the following remark.
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Remark g.1. Foralln > 1, if R > n, then:

2
n ;
+int
Urn =\ 1 — ik

is a 2w /n—periodic solution of (3.1).
Proof. To find these solutions, we can seach for solutions of the type Ae™ and then

determine A. Alternatively, we can do directly the computations, since we have already
“guessed” the form of the solution.

‘We have:
2
n n
uf, = —n? 1_ﬁei t
and:
le TL2 m n2 mn
R~ Dy = B2 (1) (1= g s = 2y [1 - 1 o
so this remark follows a

These solutions are actually minimisers, as the next remark shows.

Remark g.2. For alln > 1, if R > n, then ug, is a minimiser of Er i the class of

H (S'/n;R?) functions with zero weight, that is fozﬂ/"v dt = 0. The notation S'/n
means 2w /n—periodic, since with constant speed 1 we trasverse n times the contracted
circle.

Proof. Suppose we have another function v. We consider their difference f = v—ug, €

Hy.(S'/n; R?) and we see that [-™/" f dt = 0. We have:

27 /n 1 R2

&r(v) — Er(urn) = /0 §(|v’|2 _ |u;2n|2) + I((l P -1 — |uR,n|2)2) dt

and then we must endure some computations. Using v = f +upr, and an integration by
parts:

amin ] 12 2 R? 2 2 n’ 2
[]:/ §|f| +n fuR,n+I(’f| + 2fupn) —E(W + 2fug,) dt
0

S 2ﬂ/nl N2 _ 2l F12) dt
0

Now, if f is represented by its Fourier series f = >, axe™*, f' = £ inka,e™"*,
then we deduce |f’'| > n|f| and as a consequence:

gR(’U) — %R(uR,n) 2 O
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g.1.2 Vortices on the plane (2-D case)
We will now focus our attention on functions u : R? — R? = C. The 2—dimensional
problem comes from minimising the energy:

1 1
Epp0)(v) = / §|Vv\2 + Z<1 — \v[z)z dz, ]VU\Q = ]V?Rv\z + | VSv|?
Br(0)

under some assumptions. Notice, once again, on the right side the Ginzburg-Landau
potential W (v) = (1 — |v[*)? . The reason we restrict ourselves on the disc Bz(0) C R
is as in the 1—dimensional case. As in (8.1) or the introduction, considering the variation
d& /6, we can obtain the associated partial differential equation:

Au = (Ju]* = 1u (3.2)

What are the assumptions one utilises in these kind of problems? Surely the easiest is
the radial condition u(re') = p(r)e'®, since it leads to an ordinary differential equation,
and those solutions are basically treated in [14].

Expressing the Laplace operator in polar coordinates:

0*u  10u 1 9%u

A= 222, 227
Y 87’2+r87’+r28t2

we obtain:
/1 7 1 / 7 2 7
§/()e + —p/ (1) — Lp(r)e™ = (p2(r) — 1p(r)
which becomes:
r2p"(r) +1p'(r) = ¢p(r) + r?p(r)(1 = p*(r)) = 0 (3-3)

What can be proven is the following proposition:

Theorem g.9. Suppose p is a solution of (3.3). The following hold:

i. All real solutions p in [0, R] are located near 0 and they can be expressed as a

series of the form:
a+ Z Pk(a)r%]
k=1

where a € R is a real parameter and Py are odd polynomials satisfying the
recursive relation:

pa(r) =11

4k(k+q>Pk: Z PKPmPn_Pk’—lv Po(a):a

l+m+n=k—q—1

These p, can be extended analytically, so we will denote by p, their respective
analytic continuation.
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1. Suppose a > 0. There exists a constant A > 0 such that:
v.a. If a > A, then p, is strictly monotone increasing from 0 to oo, as r goes
from 0 to some finite radius.

1.b. If a = A, then py is strictly monotone increasing from 0 to 1, as r goes
from 0 to oo.

vi.e. If a < A, then p, is oscillates between =1 indefinitely, on both sides of 0,
in the interval |0, o).

In fact, Hervé and Hervé in [14] prove some more properties for radial solutions, but
they are out of the scope of this presentation. Point ii.b. is important, since it guarantees
the existence of vortices on the plane, that is radial solutions of (3.2) whose radial part
is monotone increasing asymptotically from 0 to 1.

Definition g.4 (Vortices). A function u(re??) = p(r)e'? is called a vortex if it is a
radial solution of (3.2) thatl increases asymploticaly from 0 to 1, as r goes from 0 to
0.

We will give some ideas about the proofs in Theorem 3.9 in what follows. Notice that
throughout the proofs we often avoid treating symmetric cases. For example, observe
that if p is a solution of (3.3), then —p is too.

Proof. There are a couple of different forms of (3.3) which can be proven to be equivalent.
Those are, for example:

Td%(m) = (¢" = r*)p+r?p’ (3-4)
d d

o ng_l 5(7"%)} =r""p(p* — 1) (3-5)
¢"(t) = (¢ + e (P*(t) — 1) p(t), where p(t) = p(e') (3.6)

As a remark, (3.6) shows that ¢ is concave and positive or convex and negative, unless
its graph lies in the open set:

Q= {(t.7)| 7 <1 ™)

This property is often called logarithmic convexity and set €2 is illustrated above.

Equation (3.5) gives us the system of differential equations:

rp' +qp=rigand ¢ =r'"p(p* — 1) (3.7)

which is, in integral form:

rd

p=— [ r*"lgdrand g = /Tl_qp(pZ —1)dr (3-8)
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1
Q
-1
Figure g.1
Now, if p, @ are two solutions of (3.3), we have:
d / / 2 2
- (r(p'w = p)) = rp=(p® — %) (3-9)

which shows that the difference of two positive solutions p, @ cannot vanish more than
once on [0, 00).

This proof is partitioned in several lemmas, which we will see one-by-one. First, if

we set:
o) =3 anr”
n=1

then from (3.3) follows that a,, = 0 for all n < ¢, as well as for those n which are
not of the same parity as ¢. Value a = a, is indetermined and also a, o is given by
aqt2r = Pr(a). Those P, are polynomials given by the recursive formula:

Ak(k + q) Py = Z PP, P, — P._1, where Py(a) =a

l+m+4n=k—q—1

Our convention is that a sum of negative index is empty. Py are actually odd and if we

choose b and A > 0 so that:
22
b =8N - 10
] (3.10)
we get |Py(a)] < A¥la| for all |a| < b and for all k. In turn, the series announced in
Theorem 3.3 converge, with radius of convergence at least 1/v/\.

The following lemma concerns the extendability of solutions to series of the form of
Pa-

Lemma 3.5. Every solution p of (3.3), defined on some open interval (0, R), is either
tending to £oo as r — 0, or it can be extended to a solution of the form p,.

Proof. There are three cases we need to consider. First, suppose at some rq = logty we
have p(e') > 0 and p'(e™) < 0. Then, by logarithmic convexity, p tends to infinity as
t — —oo. Similarly, if p/(rg) > 0 and p > 1 for all » € (0,7¢], then there exists a limit
p — L as r — 0. By two integrations of (3.4) we obtain:

2
ql 2
N—l
p 5 og'r
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Figure 3.2

It remains to see what happens if p: (0, R) — (—1,1). If g is as in (3.8) (notice that
rip — 0 as r — 0), then using the formulas of (3.8) successively and in alteration we
obtain:

9= O(Tl_q)v pP= O(T’), 9= O(T2_q)v pP= O(T’Q), g = O(l)a p= O(Tq)
Now, in (3.9) we can choose w = p;. Quantity p'p; — pp) tends to 0 and the right hand
side of (3.9) is O(r19™1), so that quantity in the start is O(r¥™!) and, as r — 0:
dp
— 2 50
dr pr -

Then p/p; has a limit, say a, which is also the limit of p/r?. If we choose b > |a] in (3.10)
and if ry < 1/v/), then py — p, uniformly as a’ — a, in [0, 7). Since p lies between p,_.
and p,.. for each ¢ > 0, we conclude p = p,,. O

The second lemma examines how p increases, if there exists a point ¢ such that
p(ro) = 1.

Lemma 3.6. If a solution of (3.3) has the property that there exists some ro € (0, 00)
such that p(ro) = 1 and p'(rg) > 0, then one R € (rg,00) can be found such that p is
strictly increasing from p(ro) to co as r increases from ro to R.

Proof. This proof is quite technical. The summary is as follows:

Function ¢ in (3.6) is strictly increasing after ty = log g, and in fact it is increasing
quite fast (as @, ¢, ¢" are all positive). For technical reasons, choose ¢; large enough
such that ¢(t1) > V2 and:

R> el (1 + tp(tl)/go’(tl)), (R—e")?>R+1
In the end, choose Ry € [\/2(R + 1), v2(R — e)]. We consider ¢ as a solution of:
" (t) = a(t)p’(t), where a(t) =q¢*¢™*(t) + e (1 - ¢ *(1))

and we will compare it to some 1(t) = Ry/(R — €'), which is the solution of:

V() = BE)(E), where B(t) = Rigmet + e
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(here 5(t) < €*/2 < a(t)). From the initial conditions:

(1) < ol(ty) and

we obtain ¢ < ¢ for t > t; and ¢’ < R. Indeed, if the analytic ¢ — v remained positive
on (t1,t5), yet vanished at ¢, then:

d
(V' — ) = v (ap® — Bi?)

would force ¢ /v to be strictly increasing on (¢, t5), starting from something greater or
equal to 1 and arriving at 1. ]

The third lemma concerns the oscillating solutions p,.

Lemma g.7. Let p be a solution of (3.3) on [ro,r1], which is negative on (ry,ry) but
vanishes on either end. Then, p > —1 and there exists some other ro € (11,72 /o) such
that p(r2) = 0. Moreover, p > 0 on (r1,72) and in fact:

sup |f| < sup |f|

(r1,72) (ro,r1)

Proof. If we had p(rq) for some ry € (rg,r1), then by Lemma 3.6 we would have that
p(r1) cannot vanish (notice here that if p(rs) = —1 and p'(r2) < 0, by a reflection we get
—p(re) = 1 and —p/(r3) > 0). Therefore, p > —1.

Now set to = log g, t1 = logr; and consider ¢ as in (3.6). We reflect the graph of ¢
around (t1,0) and we get some function ¢ such that 0 < ¢ < 1 on (1, 2t; —t,), vanishing
on either end, and satisfying the ordinary differential equation:

¢// — QQQ/) + 64t1_2t(¢3 _ w)

If we differentiate the latter as well as (3.6), we observe that 1) and ¢ have the same
derivatives at 1, up to the third order. However:

() < vl(h)

and then for ¢t > ¢; sufficiently close to ¢;, 0 < ¢ < 4. This holds, at first sight, only
near ti, so consider ty € (t1,2t; — to) the first time which the strict inequality fails. We
would get:
d -
— (0 — o) = pp [T (1 = ¢%) — (1 - 7))
with the term inside the brackets being negative, and ¢ /v to be strictly decreasing. But
then ¢/ = 1 on either end, which is contradictory. O

The fourth lemma refines Lemma 3.6 for a > 0. In its proof we will find strong
indications about the form of the solutions, as presented in the main Theorem §.3.

Lemma 8.8. Let a > 0. If there exists some o € (0,00) such that p,(ro) = 1, then there
exists also some R € (rg,00) such that p, is strictly increasing from 0 to oo, as r goes
from 0 to R.
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Proof. Function @, (t) = p,(€e') in (3.6) is strictly convex and increasing, as long as its
graph never crosses the boundary of Q. So, if ¢, does not cross the boundary of €2,
Lemma 3.6 is in effect and we can prove the assertion.

If ¢, does cross the boundary of €2, then it becomes concave and can either remain
strictly increasing or pass through a maximum. In the first case, it re-exits and, like
before, the lemma is proved. In the second case, it decreases and vanishes, so it has a
sequence of zeros, predicted by Lemma g.7. Therefore, ¢, stays entirely inside €2 and it
must be strictly between —1 and 1, thus never obtaining value 1. O

These four lemmas are the basic ingredients for the proof (plus an existence result,
based on Bessel’s functions, which we will see later). What we have seen so far indicates
three kind of possible solutions, those strictly monotone increasing from 0 to some finite
radius, the radial parts of vortices and the oscillating solutions.

Casea > A: If 0 < p, < 1 and g, is as in (3.7), then g, decreases strictly from 2qa
and the integrals of (3.8) become r?p, and g, — 2qa, and:

4(g+1)

Ja < 2qa, pa < ar?, g, > 2qa — ar’/2, p, > a {rq —

The maximum of the term inside the bracket is:

A 2q+1 (q<q+1>>q/2
q+2 q+2

Now, if aM is greater or equal to 1, Lemma 3.8 applies. If p, reaches 1 at some point,
Lemma 3.8 shows that this point is unique, so r = p; (1) is well defined. The same
holds for ¢’ > @ and in fact:

pt (1) < pt(1), since @' > a = py > p,

Moreover, for any a’ close to a, function p, also obtains the value 1 exactly once and
p (1) = p71(1) as @’ — a. Indeed, we have:

Pa’ = Pa; P;/ — piz

uniformly on [0, 7], an interval chosen at the end of Lemma g.5. By using the continuous
dependence of solutions on their data, if p, extends to [0, r1], then for a’ nearby, p, also
extends and p,, — p, uniformly on [0, r]. Taking:

r=p,(1+¢), ro=p,"(1—¢), 0<e<1
we obtain |p. — pa| < € on [0, 7], which forces p,,'(1) to tend to p, (1), as the first is in

between ry, 79.

Those values for a > 0 which p, intersects 1 form an interval (A4, co), where A > 0.
However, we will need to prove A > 0, because the other remaining cases need to lie in
[0, A]. This is the content of the next lemma, with which we basically show that near 0
oscillating solutions exist. More details on oscillating solutions later.

Lemma 3.9. The following hold:

i. Given ry € (0,00), there exists b € (0,00) such that {p,/a}e< is a (of course well
defined) bounded family, which is also equicontinuous on [0,1].
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1. When a — 0, those p,/a tend uniformly towards the Bessel function J,, on any
compact subset of [0,00). Bessel’s function has an infinite number of zeros which
are positive.

e (_1)kr2k
s ' q S —
To=art) RN (g + k)

k=0

Proof. For i.: Suppose we have some b and A < 1, as in (3.10). Then for |a| < b:

o

a

Pa
a

<B=) (q+2k)\"

k=0

(also, |wa(0)], |©4(0)] < |a|B). If r1 < 1, this concludes the proof. If r; > 1 and p, is
defined on [0, 1], then write ¢ = logr and consider ¢ as a solution of some:

Choose v > 1 so that v > |¢|, and then a standard argument (Gronwall) shows that the
initial bounds imply:

| 0a(®)], |0(0)] < lalBe™, where 0 <t <t

If we take v = ¢* + €** and if |a| < b, |a|Be™ < 1, then ¢, remains bounded by
la|Ber™ < 1.

For ii.: All Py(a)/a tend towards P/(0) as a — 0. By differentiating the recursive

formula of P, we obtain:
4k(k +q) P;,(0) = —F;_41(0)

But those P/(0) are exactly the (¢ + 2k)—coeflicients in the Taylor-Maclaurin series of
the Bessel function J,. If b and X are as in i., then |P(a)/a| < A* for all k and |a] < b,

so it follows that:
Pa

/
—= — J, and o _, J
a a
as a — 0, uniformly in [0, 1]. For a compact interval [1,r;], a uniform bound on p,/a and
p./a, together with (3.3), give a uniform bound for p” /a. By the Arzela-Ascoli theorem,
there exists a sequence (ay,);2,, a, — 0, such that p,,/a,, p, /an, p) /a, converge
uniformly. The limit, say w, of p,, /a, satisfies:

r*w”(r) +ra’ (r) + (r* — ¢H)w(r) =0
so it is the Bessel function J,. [

Case a = A: The image so far is that of solutions that intersect 1 at some point,
which comes closer to 0 as a € (A, 00) increases. If we consider those points p; (1), we
expect them to approach oo as a — A, since the limit case p4 has no intersection with 1
(the limit a — oo is 0, and this is not difficult to see). Set:

S = sup s (1)
a>A

and suppose S < oo. Function p4 cannot take as a value 1 and cannot vanish either,
since then p,, a > A, would tend uniformly to p4, as a — A, on a set [0,7] (1 is as
before Lemma 3.9). As in the proof of Lemma 3.8, we can see that p, lies between —1,
1, and tends towards some ¢ € (0,1]. Now, if ¢ # 1, by (3.6) we get the asymptotic
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behaviour ¢4 ~ £(¢* — 1)e*, which is contradictory. We conclude that p4 is strictly
increasing, from 0 to 1 and is defined in the whole [0, o). If now « is sufficiently close to
A, we have already seen the procedure with which p, can be extended, say to [0, S + 1].
But then p, is less than 1 in this interval (decrease a even more, if needed), which is
absurd, by the definition of S. We conclude that S = oo and pj4 is strictly increasing,
from 0 to 1, as r goes from 0 to oc.

Case 0 < a < A: In this case p, cannot be ascending and having the same limits
as pa, since then we would have p, < ps and (3.9) would prove p,/pa to be strictly
decreasing, from a/A to 1. Therefore, p, vanishes, and we must show that it does so
more than once, since then Lemma 3.7 provides an infinite ammount of zeros. Let r; > 0
be the unique zero of p,, so that p, < 0in (r1,00). In the proof of Lemma 3.7 replace ¢
with ¢,, to with —oco and ¢ with ¢,(2¢t; — t). Then, for ¢ > t; we obtain:

0< —QO(Z(t) < goa(Qtl — t)

with the latter tending to 0 as ¢ — oco. Therefore, for ¢ large enough, ¢, lies inside 2,
and ¢, < 0 would force ¢, to be convex. This is a contradiction.

This proof is now complete. O

Figure 3.9: Possible profiles of the solutions of (3.3).

9.2 The non-smooth potential case

In what follows we will restrict ourselves to the case of the non-smooth potential W :
R? — R:
0, ifjul=1
W =%
1, if ju| #1

This choice has the advantage of being an explicit potential, while also exaggerating the
maximum and the minimum of the usual Ginzburg-Landau potential.
What we want to examine is the minimisers of the energy functional:

2w 1
&r(v) = &r(v;S) = / §|v'|2 + R*-W(v)dt, u:S'— R?
0

and in particular we are interested in proving the existence of them under symmetry
hypothesis, as well as finding a closed form.
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Figure 3.4

While having some advantages, potential W is discontinuous. So, it is justified to
work in such a way as to avoid the discontinuity. By considering only circular trajecto-
ries, we have the following:

Remark g.10. Suppose R > 0 is given. The circular trajectories u(t) = agpe™ minimise
the energy &r in the class:
A e = {ae™ | a > 0}

if:
oo Jarn=0, R<1/V2
e ar =1, R>1/\/§

Proof. If v(t) = ae™, we have:

27 -
2T -

a=1

1
21 - Er(v) = =a% + R*1yyuny = ’
2 (v) 2 (a1} %a2+R2), a#1

A~ N

By 1/2 < a?/2 + R? if and only if R > 1/v/2, we get that &z(v) is minimised in the
R > 1/\/§ case if we set ap = 1. If R < 1/\/5, it is immediate that the minimisation
occurs when ar = 0. [

This remark is the starting point of finding minimisers for the more general case
u: St — R?, under some symmetry hypotheses.

9.2.1 Minimisers under symmetry hypotheses (1-D case)

The symmetry we impose to the problem is the following: Symmetric points on S', under
any axis x or y, map to symmetric values under u. This is known as equivariance for
the group of {x,y}—reflections. In general, we state the following definition:

Definition g.11 (Equivariance). Let G be a group acting on sets X and Y. We say a
function u : X —Y is equivariant with respect to G if it respects the action, that is:

u(g-z) =g-u(z)

In particular, if G is the group of reflections on x and y axes, then u maps symmetric
points to symmelric points.




64 Chapter 3. Vortices

Figure 3.5: An example of a G—invariant u for the group of {z, y}—reflections.

This restriction forces each candidate u to repeat itself in each 7/2—time interval.
For this reason, sometimes we compute the energy of u not in the whole 27 interval but
rather only in (0, 7/2). Then, we multiply by 4.

For the following, since equivariance with respect to {x, y}—reflections is the only
form of equivariance we are interested in, we will not specify the group each time. Equiv-
ariance gives us the following remark about the trajectory u:

Remark g.12. If u : S' — R? is equivariant and L'(S*; R?), then u, is even, us is odd

and: )
/ w(t) dt = 0
0

As a consequence, uy (£m/2) = 0, uz(0) = 0, uz(m) = 0.

Proof. From equivariance follows:
Ul(t) = ul(—t), Ul(t) = —Ul(ﬂ' — t)
and:
us(t) = —ug(—t), us(t) = ug(m — t)
(in particular uy (£7/2) = 0, u3(0) = 0, ug(w) = 0), so u(t) = —u(—t). Integrating gives
the desired result. O

A key ingredient for the proof of the existence of minimisers, under this equivariance
hypothesis, is the projection to the circle. This way we will restrict the behaviour of the
minimisers, by showing that they must lie inside the closed disc B;(0).

Lemma 3.1 (Projection on the disc). Let u : S — R? be an HL _(S*; R?) function. Then

— loc
the projection on the closed ball B1(0):

. {u/w\, il > 1

u, if lul <1

1s 1 — Lipschitz:
|Pu— Pv| < |u— v
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Figure 3.6

Moreover, by composition Pu € HL _(S';R?) and:

|(Pu)'| < o]

Therefore, any function u escaping the disc B1(0) for positive measure time cannot be
a minimiser for Eg.

Proof. Letu,v € H._(S';R?). We set:
M- {max {ﬁ, ﬁ} ,if Jul, o] > 1
1, otherwise
and we notice that M < 1 and:
|Pu— Pv| < M|u —v| < |u— v
which shows that P is 1—Lipschitz.

Because P is Lipschitz, the composition Pu is HL_(S';R?) (cf. Theorem A.2). Now
we calculate:

N 1 t+h
/ i TN /
Py = i+ [ (Puy(s) as
— im Pu(t + h) — Pu(t)
o0 h

where (%) is justified by the Lebesgue differentiation theorem. Therefore:

|(Pu)'(#)] = lim

=1
h—0

Pu(t + h) — Pu(t) '
h
u(t + h) — u(t) ‘

** .
< lim
h—0

where in (%) the Lipschitz condition of P is used. We arrive at the desired estimate for
the derivative of the projection.
|(Pu)'] < Ju|
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Theorem g.14 (Existence of H; (S';R?) equivariant minimisers for the non-smooth
potential case). There exists a minimiser of:

27 1
Enlv) = /0 ST R W) di

wn the class:
o = {ve H,(S" R | vis equivariant}

Proof. The proof is an application of the direct method.
Step I: Notice that:
0< ig{f &r(v) < 00

because v(t) = e has finite energy:

] 271'1
%R(e”):/ §dt:7r<oo
0

Step II: From Step I, since we have established inf, &r(v) < oo, we consider a
minimising sequence, that is, a sequence {v;}7>, C o such that:

Er(vy) 222 inf &p(v)

We can suppose that |v;| < 1, since from Lemma 3.13 escaping the disc B1(0) only in-
creases the energy. In other words, Pvy is another minimising sequence for &g, because:

inf Ex(v) < Er(Poy) < r(vi) Ll inf &p(v)

Thus, this way we have:

2
sup/ log|? dt < 27
keN Jo

and also, for ky sufficienty large, since {v;}72, is a minimising sequence:

2m
sup/ [/ |* dt < Egr(e") =7
k=ko JO

Therefore, we can suppose there exists a constant M > 0 such that:

2m
sup/ [ |2 dt < M
0

keN

and, in turn, ||vg|| g s1;r2) is uniformly bounded for all &.

Step III: Since ||vg||g1(str2) is uniformly bounded for all &, there exists a subse-
quence, still denoted by {v;}2° ,, such that:

Vi — v

H1(S!;R2)
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for some u € H'(S'; R?). By the lower semi-continuity of fozﬂ |02 dt:

2 21
/ |u'|* dt < liminf/ o | dt
0 k—o0 0

because weak H'—convergence implies v}, — v’ in L?(S'; R?). Semi-continuity is a fun-
damental idea in the calculus of variations and we study it a little bit in Definition 4.8, in
Chapter 4, which is clearly more geometric. Moreover, H'—convergence implies v, — u
in L*(S'; R?), and for a subsequence still denoted by {v;,}3° ;, we have strong convergence
v, — w in L?(S';R?). The above are a consequence of the compact embedding:

H'(SY; R?*) = WH*(S; R?) < L*(S};R?)
(cf. Theorem A.4).

Potential I is also lower semi-continuous, so:

2w % 2m
/ W(u) dt < / lim inf W (vg) d hm 1nf/ W (o)
0 0 k—o0

In () we use the lower semicontinuity of W and in (xx) Fatou’s lemma. All of Step III
can now be summarised by the fact:

2 1 2T 1
&r(u) :/ —J]*+ R* W(u )dtgnminf/ 5|U;€|2+R2-W(uk) dt = lim inf Ep(vy)
0 0 e

k—o0

Therefore, u is a minimiser of &x.

Step I'V: What remains is to show that « is indeed in the class &. Class & is strongly
closed and convex, since:

Yo, v9 € &, A € R, we have v; + \vy €

(o is a subspace of H'(S'; R?)), so Theorem A.10 applies. Therefore & is weakly closed
and if v, — u, then u € . O

Theorem 3.14 guarantees the existence of an equivariant minimiser, but it does not
give any idea about the closed form of it. In the following we examine how a minimiser
of this kind can be.

Lemma g.15 (Harmonic condition inside quadrants). Any H'(S';R?) and equivariant
minimiser of Eg is contained inside B1(0) (by the projection of Lemma 3.13) and has
a continuous representative. Inside B1(0), it s a (possibly countably infinite) union of
line segments in each quadrant, or il is constant.

Proof. Suppose that in the interval (¢y,¢;) minimiser « is inside B;(0) and in fact inside
some quadrant. We deliberately avoid the axes (that is, we avoid going past a quadrant),
since there is a possibility that there appear some regularity issues. Later, in Proposition
3.16, we will treat those cases too.

We consider a test function ¢ € CZ((to,t1); B1(0)) and € > 0 small enough so that
|u + ep| < 1. Because of minimality:

2w 1 2m 1
&Er(u) < Ep(utep) = / 5|u’|2+R2-W(u) dt < / §|u’+590'|2+R2-W(u+€go) dt
0 0
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2 1 27 1
/ Sl dtg/ S el d
0 0

and by restricting ourselves on the integral (¢o,¢;) (outside of it ¢ = 0):

thus:

1] 1] t1 g2
/ §|u'|2 dt < / §|u’ + e |2 dt = / eu'¢" + 5|gp’|2 dt >0
to

to to

We divide by € and we let ¢ — 0.
t1 e t1
/ u'o' + §|g0’|2 dt > 0= / u'g' dt >0, Yo € Cl((to, t1); R?)
to to
By integration by parts:

t1
—/ updt >0, Vo e Ccl((t(),tl);RQ)
to
so we set p ~~ —p and it follows that:

t1
/ u'odt =0, Vo € C)((to, t1); R?) = v = 0 weakly in (to, ¢)

to

This shows that in (¢, ¢;) function u is a line segment or constant. O

Proposition .16 (Harmonic condition). Let u be an H*(S*; R?) and equivariant min-
wmaser of Er. Then u is harmonic under general pertubations.

Proof. Using the principle of symmetric criticality: We can give a proof that utilises a
general theorem, the principle of symmetric criticality. This on its own is quite inter-
esting and we dedicate section B.2 for it.

Let G < O(2) < Isom(2) be the group of {z,y}—reflections on the plane. If u is
equivariant, then for every g € G we get:

Vu(gz) = Vu(z) and W (u(gz)) = W (u(x))

so the energy density (Lagrangian) 1|Vu|?> + W(u) is G—invariant. The principle of
symmetric criticality loosely states that whenever a function is G—invariant, where G
is a subgroup of the group of isometries Isom, then the critical points under G—invariant
pertubations that are G—invariant, are critical points under general pertubations. So, in
our case, our equivariant minimiser v must be a minimiser under general pertubations,
and not only pertubations that preserve equivariance.

Suppose ¢ € C°((0,27); B1(0)) and e > 0 small enough such that |u +egp| < 1. We
compute the first variation and we get, as in Lemma 3.15:

2m
—/ u" - de =0, Vo e C((0,2m); B1(0)) = u" =0
0
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There is another elementary way to prove this proposition, which avoids the criti-
cality principle. Suppose ¢ € Cf"((O, 27); Bl(O)) is a general pertubation. We can write
© = @, + P, Where:

wo(x) = —go(x) —ng(—x) is odd
and:
o(r) + ¢(—x)
2

e(x) = is even

Therefore, we have:

2 21
/ (o) d = — / dy(po)l dz =0
0 0

because v} is odd and (¢,)" is even (the product is odd). Similarly:

2T 2T
| st da = [ ity o =0
0 0

because v} even and (¢,)" is odd (the product is odd).

Now, if u is a minimiser in the equivariance class, then for every equivariant pertu-
bation ¢ (that is ¢ is odd and 1, even) we have:

27 27
0= / ui Py + uthy do = / —uyy + uythy dx
0 0
So if we set Y1 = (o)1, Y2 = (¢e)1, We have:
2T 2T
0= [ uileido= [ ui(enda
and similarly, if ¥1 = ()2, V2 = (©e)2:

2 27
0= [ e do= [ e do
0 0
Gathering:

2 2 2 2
/ (o) di = / o)y d = / (po)s dr = / () dr = 0
0 0 0 0

we obtain: ) )
/ u-goda::/ u- (9o + pe) dr =0
0 0

]

In the following proposition we follow the variation of domain techique, as in [26],
Lemma 4.1, to establish a sort-of equipartition result for the non-smooth potential. This
is in fact an energy conservation result for the minimiser and a Pohozaev identity in
disguise.

Proposition §.17. Let u be an equivariant minimiser, as in Theorem 3.14. Then the
following equipartition type equality holds:

1
5\u’|2 = R* W(u) +c, c€R constant
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Proof. Step I: Let u be an equivariant minimiser, as in Theorem g.14. We let s € (0,7/2)
and fix » > 0 appropriately small, such that 0 < kr < s, for « in a neighbourhood of 1.
We define the comparison map:

_ u(t/kK), 0<t<kr
U(t> = < t—kr
U r—l—(s—r)—), kr <t<s

S—KT

which is basically a consequence of the variation of the domain of u. Map u extends to the
whole [0, 2] interval, because of symmetry and with a linear continuation on (s, 7/2),
that respects the equivariance of u. Notice that minimality gives us:

Er(u) < Er(u)
and also, if Kk = 1, then © = .
Now, a direct (but long) computation to &z(u) shows the following:
2m 1
0
w/2 1
_ 4 / SIE R W () dr
0

1 d (t>2
=4 120 2
[/0 Z‘dtu K

w/2 1
+ R* - W (u) dt+/ 5|a’|2+R2-W(u) dt]

s 2

+R2-W(u)dt+/

1 iu<7"+($—r)t_m’>/
, 2 |dt S§— Kr

We use a change of variables y = ¢/k in the first integral and y = r+ (s —r)(t —kr) /(s —
xr) in the second integral, and we also set the last integral equal to A(s). We have:

"1 fos—r s — Kr
[...] :4[/0 ﬂ|u’\2+/£R2W(u) dy—l—/ m!u'ﬁ—l—?RQW(u) dy + A(s)

Step II: We also define the function of x:

sS—T S —K

_ Ti 72 2 ’ 72 " n2
F) = [ gl P nRe W) dy+ [ g P SR W) dy o+ AG)

1
= [ S B W) dy - A
0

_ /0 (i _ 1) /|2 + (k — )R- W (u) dy+/: (ﬁ — %) /)

+(S_HT—1>R2~W(u)dy

S—7T

which is positive f(x) > 0, because u has minimal energy (therefore &g (u) —&r(u) > 0).
By differentiating:

| # r r
P = [ =gl Wyt [ gl = R W) dy

and since f(1) = 0, the difference of the energies, f, attains its global minimum at 1.
Therefore, f’(1) = 0. Remember that value x = 1 corresponds to & = wu, which is a
minimiser of the energy.
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The above show that:

f’(l):/r —|[u']*+ R* W (u )dy+/:2(sr_

W — — R W(u) dy=0=
T) s—r

11,
= [ gl - W dy=r | [P - R W dy

Letting s — r, by the Lebesgue differentiation theorem we obtain:
"L 2 Lo 2
§]u| — R -W(u)dy=r §]u| — R*-W(u)
0

and if we set g(y) = 5|u/|* — R? - W(u), the above becomes:

/Or g(y) dy =rg(r) = rd% /0 9(y) dy (3.11)

which is an ordinary differential equation, with respect to r, which can be solved. We
note that since smoothness is not given, this differential equation is solved in the distri-
bution sence. Equation (3.11) becomes:

L2 o] =0 [ o

d

9(y) = %/0 g(y) dy = ¢, constant

This shows the equipartition type equality:

and therefore:

1
§\u’|2 =R*-W(u) +c

]

Remark $.18. Any H'(S';R?) and equivariant minimiser of &g, restricted to [0,7/2],
cannot leave its quadrant, say for example B1(0) N (Ry x R,).

Proof. Indeed, suppose that u has some points inside B;(0) N (R, x R, ) but it manages
to escape for some non-zero time to the other quadrants. Then, with at most two reflec-
tions, one with respect to the  and one other with respect to the y axes, we map the
outliers inside the first quadrant B;(0) N (R, x R,). This new trajectory has the same
energy as the first one. If line segments existed, in this new trajectory appear regular-
ity issues, which contradict the harmonic condition established by Proposition 3.16. If
was constituted only by arcs, then its total length is more than one circle, which means
that its speed ¢ must be bigger the total speed ¢ of the circle (we utilised Proposition
3.17). By Proposition 3.17, we find that the circular trajectory has less energy.

N

Remark g.19. From Proposition 3.17 follows that any arc of the minimiser has speed
V2¢, while any line has speed \/2c + 2R?. Also, from Proposition 3.16 u intersects the
circle at least once (for the non-trivial zero case); this allows us to suppose, for conve-
nience purposes, that this one point is (1,0). That is, the trajectory “starts” from (1,0).

Lemma g.20. Given Proposition 3.17, if u is an non-zero H'(S'; R?) and equivariant
minimiser of g with constant ¢, then 0 < ¢ < 1/2.
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Figure g.7: Loss of smoothness after reflection.

Proof. First observe that it is not possible to have ¢ > 1/2. That is because the energy
becomes:

Er(v) = 4 [%+2R2 (g—tﬂ >

with the right hand side being the energy of the circular trajectory.

As for ¢ > 0: If u is a mixed trajectory or a circle, that is it contains an are, then it
is obvious that ¢ > 0, as Remark g.19 shows. We must examine what happens if u is
a union of line segments only. Observe that in such unions corresponds a value ¢ that
depends on length, and as length increases, so does c. Indeed, if ¢; < /5 are the lengths
of two unions as described above, then:

2\ 2¢1 +2R? < 27\/2¢y + 2R?2 = ¢; < ¢

(where ¢, co are the corresponding constants). Hence, energy also increases with
length, since:
& =27 (c + 2R2)

If we show that the trajectory of minimal length is not a minimiser, our lemma follows.

This minimal-length trajectory is the line segment a = [1, —1]U[—1, 1] (that s, [1, —1]
counted twice). By calculating its length we get:

2 2
21V2c+2R? =4=c+ R’ = =5 = c+2R* = S + R?
T

2
The energy is:
2
&(a) =27 (— + R2>

2
and the energy of the zero function is:

&(0) =27 R?
therefore &(a) > &(0). This shows a cannot be a minimiser. O

Lemma 3.21. Given Proposition 3.17 and Lemma 3.20, let ., 0 < ¢ < 1/2, be the class
of functions:

1
d. = {v € H'(S";R?) | v equivariant and §|v’|2 = R?-W(v) + c}
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Each minimiser of:
2m 1
&r(v) = / §|v’|2 + R*-W(v) dx
0

m . is a union of a single arc and a line which is perpandicular to one of the axes, in
each quadrant.

Proof. Using the conservation of the energy in Proposition 3.17, one can rewrite the
energy as:

Er(v) =4 |ct + (c+2R?) (g — tﬂ =4 [%C + 2R? (g - tﬂ
where ¢ is the time v spends on the arcs. To minimise &5, given that c is constant in
each class &, it is clear that we must maximise ¢. In turn, we need to minimise the time
v spends outside the circle, that is the time v is harmonic. But then notice that this time

is directly proportional to length, since:
W2+ 2R? (g - t)

is the total length of all of the line segments that may be present. It follows that the line
segment is one and that it is perpandicular to one of the axes, since this configuration
minimises length.

Figure 3.8: A candidate of a minimiser, a minimiser in &..

Proposition g.22 (Minimisers in 1—dimension, under symmetry hypotheses). Lef u
be an H'(S'; R?) and equivariant minimiser of &x.

i. If R > 1/7/2, a circular trajectory is favoured over any other mized trajectory,
where both arcs and line segments are present. In combination with Remark
3.10, in this case the minimiser is the circular trajectory.

ii. If R < 1/v/2, the zero functon is favoured over any other mixed trajectory,
where both arcs and line segments are present. In combination with Remark
3.10, in this case the minimaser is the zero function.
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Proof. Our previous Lemma g.21 allows us to consider only unions of one arc and one
line segment, which intersects one of the axes at a right angle. Suppose that a trajectory
starts at (1,0) and follows an arc of angle 6, before leaving the circle for a line segment.
We want to minimise the energy &, but this is impossible without imposing a restriction.
The reason is because &z minimises at (¢,¢) = (7/2,0) without any extra assumptions,
which is problematic as ¢t = 7/2 means that only an arc exists and ¢ = 0 that no arc
exists. In a way, there are two problems, one that concerns times and one concerning
distance, which we have not yet relate. Therefore, writing t = 6/v/2¢c, we set:

V2c+2R? (5 — t) = cos 0 (3.12)

This equation, along with ¢ = 6/v/2c, expresses the relationship between ¢ and 6, by
measuring the line segment of the trajectory two different ways. Equation (3.12) can
also be written in the more usable form:

V2c+2R? (g — t) = cos(tV/2c) (3.13)

This is more usable not because it is easier than (3.12), but because functions F, F
-which will be introduced later- are easier to compute. It will be useful to denote:

G(t,c) = cos(tv2c) — V2¢ + 2R? (5 - t>

In i. we will need to compare two energies, the one of the mixed circular trajectory
with that of the circular orbit. Respectively, in ii. we will compare the energy of the
circular trajectory to that of the zero function. This is the reason we also consider the
energy differences:

_ 1 _ 2 (T . Z
F(t, C) - Z (%mlxed - %cn"c) = 2 + 2R (2 t> 1

and: . R
Z_l (%mixed - %zer0> = % + TrT - 2R2

Equations G = 0, F' = 0, F = 0 define three curves (the latter two are linear) and
it is not difficult to see that above F or F' we have F > 0 or F' > 0 respectively. The
one defined by G = 0, inside (0,7/2) x (0,1/2), is exactly the collection of pairs (¢, c)
which are able to correctly define a mixed circular trajectory of arc 6 = t/v/2c. If we
prove that G = 0 is above F' = 0 or F=0 (when R > 1/\/5 or R < 1/\/5), then we
will have shown that G = 0 lies exactly in the region where F' > 0 or F > 0. This in
turn means that every trajectory of arc @ = t/v/2c, (t,c) € (0,7/2) x (0,1/2), has more
energy than either the circular trajectory or the zero function. Many questions arise, for
example whether G = 0 really defines a function, rather than a union of functions (as
22 + 9% =1 does).

F(t,c) =

Lets show that G = 0 defines only one function ¢ = ¢(¢): First of all, by the chain
rule we have:
dG _ 0G L 9G oG dc dc /
dt ~ ot ocdt 3G

where by d/dt we denote the total derivative, whereas with 8/ 8t the derivative that does
not account for the dependence of ¢ on t. Then, because:

a(‘;t; = —V2¢sin(tV2¢) + V2¢ + 2R?
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and: e . )
T
- gin(tV2%) — ——— (= ¢
dc v 2¢ sin( ) V2c + 2R? <2 >
we have:

1 1 ™
—sin(tV26) + ——— (2 ¢
dC:l%%sm(¢7§ \&c+2R2(2

)
dt /—\/2_csin(t\/2_c) +2c+2R?

This is a differential equation that defines G = 0. In fact it is easily seen that dc/dt > 0,
which means that ¢ increases. Notice that (7/2,1/2) belongs to G = 0, as well as
some other point (a,0), with a depending on R (this is justified by the fact that if R is
large, then G = 0 cannot be defined for all ¢, but only for those such that 7/2 — ¢ is
sufficiently small). So there exists a branch of G = 0 that passes from (7/2,1/2) and
another that passes from (a,0). The second one cannot arrive again at (7/2,1/2), for
reasons of ordinary differential equations. It must intersect either ¢ = 0 or ¢ = 1/2 or
t = /2. Intersection on ¢ = 0 cannot happen again, since ¢ increases with ¢. Therefore,
intersection happens on t = 7/2 (below ¢ = 1/2) or on ¢ = 1/2 (for t < 7/2). The first
leads to contradiction: If ¢ = 7/2, then our minimiser has an arc only, which means it
is a circle and ¢ = 1/2. The second is another contradiction, since if ¢ = 1/2, we have:

G(t,1/2) = cost — V1 + 2R? (g —t) < cost+t—g <0fort<m/2
Notice we have used Theorem A.1.

(7/2,1/2)

|
I
|
|
|
I
I
I
I
|
|
|
|
|
|
|
J

Figure 3.9: In blue G' = 0 is sketched, while in red supposedly possible branches that
do not exist.

You may have already sensed that this is a rather calculation-heavy proof, and indeed
it is. We will divide the proof in several steps. The general idea is to show that G = 0
does not intersect F = 0 or F' = 0, s0 by continuity G = 0 will either be above or below.
It is then easy to see that it is above both F' = 0 and F =0 (when R > 1/4/2 in the first
case and R < 1/v/2 in the second).

For i.: We suppose R > 1/+/2.
Step i.I: Equation F' = 0 becomes:

me 7r s 4R? 1
TaoR (Dot) - Do e= Tt 2R
5 + 2R 5 t 1 =c - + 5 R
and it is linear in £. We use this c to the general form of G and we will show it is not

possible to have G = 0. This means that /' = 0 and G = 0 cannot happen simutaneously,
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that is, they do not intersect.

G(t, c) = cos(tv2¢) — V2c + 2R? (— — t)

—cos<\/—t+1—4R2> \/—t+1—2R2 (——t)

This cosine would cause quite a lot of discomfort in our calculations, so we will use the
inequalities:

—2(2 —/2)
m
cosx > and (3.14)

_2\/5
s
to replace it. These two inequalities arise naturally if one considers the two line segments
that touch cosz atz = 0,z = v/4 and x = 7 /4, = w/2. The very simple approximation
cosxT = —%x + 1 does not work in our case. Therefore, we obtain:

_ _ 2 2
2(2 \@t\/SRt+1—4R2+1—\/ﬁt+1—2R2(g—t)
v T

m
G(t,c) > and

_ 2 2
2f<\/ﬁt+1—432——> \/ﬁtJrl—QR? <§—t>

(3.15)

x+1, whenx € (0,7/4]

(x - g) . whenz € [r/4,7/2)

\

n (g.15) it will be useful to denote with g;, g the right-hand sides.

92

g1

Figure 3.10: Functions g; and g, when R = 1/v/2.

Step i.Il: We will differentiate both g1, go with respect to R, with the aim to show
that g, /OR, 0g2/OR > 0. This would mean that ¢;, g, increase uniformly and strictly.
Setting R = 1/ V2 and considering the respectives g1, g2, we will have G > g¢; and
G > g». But then we hope to be able to prove gy, go > 0, and as a consequence, G > 0 in

(0,7/2) % (0,1/2).

We have:
991 _ R(m —2t) m(m — 4t) N 8(2 — V2)t (3.16)
orR /5 V8R2t —2nR2 + 7 /SR —4nR2 + 1 3
and:
09> _ R(m—2t) m(m — 4t) N 8v/2t (3.17)
OR Jr V8R2t —2R*t + 1 /SRt — 4R 1 + 7 317
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We denote f; and f, the functions inside the parentheses in (3.16) and (3.17). These are
the terms that define the signs of dg,/0R and 0g,/0R.

We differentiate again f; and f, with respect to R. We get:

ofi  2mR(m —4t)° N 32R(2 — /2) (1 — 2t)t
OR  \RR—2rR2+n VR -—drR2+ 7

and:

Ofs  2mR(m — 4t)? N 32RV2(m — 2t)t
OR V8R2t — 2T R2 + 773 V8R2t — 4T R2 + 773

Surprisingly, it is easy to see that both 0f,;/0R, 0f,/OR are strictly positive. So, we
consider the case R = 1/\/§, and if we show that the respectives f;, f, are positive, then
(3.16) and (3.17) are positive.

We have, for R = 1/\/5:
m(r —4t)  8(2—+/2)t

h= 2/t * Vat —
and:
fy = m(m — 4t) 8v/2t
) =

_|_
2/t Vat —m

In the next step we will show that both f;, fo are strictly monotone decreasing, with
fi(m/2), fo(m/2) > 0, which shows that both are positive.

Coming back to (3.16), (3.17), we have shown that both are positive. We once again
set R = 1/+/2 and we are willing to show that the respectives g;, g, are positive, which
concludes i., as we indicated on the start of Step i.II. We compute:

0= (nfEi-5) -2 G

In the following step we will also prove that ¢, g, are positive.

Step i.ILI: Each one of the fi, fs, g1, g2 in this step is computed in the R = 1/v/2
case.

and:

For f; and f5, we have:

dfr 2 _8(2—\/5)(7r—2t)_ L
dt 4P N —— Vi
and:
dfy w2 _8\/5(7?—2t)_l<0

dt _4\/53 VAt — T Vit
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so f1, fo are strictly monotone decreasing.

For g1, g2, we differentiate with respect to ¢ and we find:

dgi _ (m—6t)[nv4At — 7 — 42— V2)V1]
dt 27/ (4t — )t

and:

dgo (7 — 61)[mv/At — m — 4v/2V/1]

dt 2/ /(4 — )t

The second one has its zeros outside (7/4,7/2), so it retains its sign. It is not difficult
to see that this sign is negative. This means that g, is decreasing, and by:

g2(m/2) =0

we conclude that it is positive. The first one is a little more tricky: It is negative if ¢t < ¢,
and positive if ¢t > t;, where:

3

T
to =
YA —4(V2 - 2)7
In ¢, there exists a global minimum. Now we calculate g;(to) and we find:
4(2 — 2 2,2 4 2
ailte) =1 — (2-vope -t T ~0.15354 - > 0

A —A(VZ-2PPR 5 e 42— 2p

which shows that g; > 0 too.
For ii.: This case is similar.

Step ii.I: By solving F = 0 we obtain:

2 2
E+@—2R2t—0;xc—ﬁt—}z2
2 2
and then, by (3.14):
)
th/——zﬂ—m/ ——t
m
G(t,c) > and (318)

22 (e 2) G

It will, once again, be useful to denote the first and second branch as ¢g; and g».

Step ii.Il: We differentiate g; and g, with respect to R and we get:

892:—2\/_ /§_2_\/7 T

and:
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(when t < 7/2). This means that g;, g, decrease uniformly as R approaches 1/v/2. If we
show that the smallest of those, that is g1, ¢g> that correspond to R = 1/\/5, are positive,
then G > 0, which concludes the proof once more.

If R= 1/\/5, we have:

_27;/5 (m/%—l—%)—z\/;(g—Q

We have already dealt with these functions in i., so we already know that ¢;, 9> > 0 and
this concludes the proof in whole.

and:

g2 =

]

9.2.2 Minimisers under symmetry hypotheses (2-D case)

In Section 3.2 we examined the H'(S'; R?) equivariant minimisers of:
27
Er(v) = / [W'* + R? - W (v) dt, where W (v) = 1,213
0

By identifying R* = C, a logical generalisation of the previous case would be to study
H'(Bg(0); C) minimisers of:

B (o)) = /B [ W)t where IW(0) = Ty
R

Of course, if u = Ru + iSu, we define |Vu|?> = |VRu|? + |VSu|?>. The equivariance
condition can be replaced by rotational symmetry, that is we examine radial minimisers.

Just like in the one-dimensional case, the projection on the unit ball is of critical
importance for the existence of radial minimisers.

Lemma 3.23 (Projection on the disc, 2-D case). Let u : R* — C be an Hy, (R*C)
function. Then the projection on the closed ball B,(0):

S AT
u if lu| <1

18 1—Lipschitz:
|Pu — Pv| < |u —v|
Moreover, by composition Pu € H (R?* C) and:
|V Pu| < |Vul

Proof. Proceeding as in proof of Lemma .13, it can be shown that P is 1—Lipschitz and
Pu € HL_(R? C) (cf. Theorem A.2). Moreover, calculating the directional derivatives,

loc
|V Pu| < |Vu| can also be shown. We will be brief, since this is not too disimilar from

the proof of Lemma 3g.18.
1 x+he;
(Pu); = lim 7 /I

dl’i x h—0

d
Pu); d
del‘ y( u)] y

o (Pu)(a+ her) — (Pu)(a)
h—0 h
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where (%) is justified by the Lebesgue differentiation theorem. Therefore:

. | Pu(x + he;) — Pu(x)
dz: | PWi| = fim h
2 lim u(x + he;) — u(x)
h—0 h
where in (xx) the Lipschitz condition of P is used. [

We now state the analog of Theorem g.14 for the two dimensional case. We note that
for the duration of this section, a very useful tool will be the polar form of the gradient

Vu, that is:

(%A 10v~
Vv = V(Tﬁ)’U = a— ;%6

where 7, § are the unit radial and angular basis elements.

Theorem 3.24 (Existence of H';(Bgr(0); C) minimisers for the non-smooth potential
- 2—dimensional). There exists a minimiser of:

%BR(O)(U) :/ 2|v1}|2 _|_W( )d
BRr(0)

in the class:

o = {v e H},(Br(0);C) | Tr v(re”) = e when r = R}

Proof. This is, again, a consequence of the direct method.
Step I: First we note that:

0 < igf Epp(0)(v) < 00

since v(re”?) = re?’ /R, r < R, has finite energy:

1
Bruo )= [ SVl W) do
Br(0)

R 27 1
= / / —|V(,,,79)'U|2 —+ ]_) Tr- d9 dT
6=0
/ / r-df dr
0=0

< 00 dependlng onr, R)

Step II: From Step I we have established inf, &5, )(v) < 0o, so we can consider a
minimising sequence {v;}2°, C -

Enn(o)(vr) inf &gy (0)(v)

We can suppose that |v;| < 1, from Lemma g.23, therefore:

sup/ |vg|? dr < 7R?
keN J B (0)
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and also, for kg sufficiently large, since {v;}%2; is a minimising sequence:

Sup/ |Vop|* do < &EBy(0) <L€i9> < 0
k>ko J B (0) R

So we can suppose there exists a constant M > 0 such that:

sup/ |Vup|? de < M
keN J B (0)

and, in turn, ||v||g1(BL(0)c) is uniformly bounded for all k.

Step III: Since ||vk|| g1 (By(0)c) is uniformly bounded for all &, there exists a subse-
quence, still denoted by {vg}22,, such that:

w
v —————— U

H'(Br(0);R?)

for some u € H'(Bpr(0); R?). By the lower semi-continuity of [, . [0* da:

/ |Vul? dor < hmlnf/ (V| dx
Br(0) k=oo JBR(0)

because weak H'—convergence implies Vv, = Vu in L?(Bg(0); C). Moreover, H'—co-

nvergence implies v, — u in L*(Bg(0);C), and for a subsequence still denoted by
{vr}2,, we have strong convergence v, — u in L?(Bg(0); R?). The above are a conse-
quence of the compact embedding:

H! (BR(O), C) = w2 (BR<O>, (C) e L2 (BR(O), (C)
(cf. Theorem A.4).

Potential I is also lower semi-continuous, so:

W(u) dt % / lim inf W (vy,) d hm mf/ W (vg)
Br(0) Br(0)

k—o0

In (x) we use the lower semi-continuity of W and in (xx) Fatou’s lemma. All of Step III
can now be summarised by the fact:

1
B () = | 5yvu|2+1a32.W(u) it
Br(0)

gnminf/ yw 2+ R*- W (vy) dt
k—o0 Br(0) 2

= h]gggjlf %BR 0) (Uk)

Therefore, u is a minimiser of &g, ). Note that u has the same boundary conditions, by
the continuity of the trace operator.

[1Tr wn = Tr ull22@BR0)0) < Cllun = ullr2Br0)0)

Step I'V: What remains is to show that u is in class &/. First, & is strongly closed.
This is because H,,(Br(0); C) is a subspace of H'(Bg(0); C), set:

B = {v e L*(Bg(0);C) | Tr v(Re") = ¢}



82 Chapter 3. Vortices

is strongly closed and also:

o =H!

rad

All of those sets are convex too. So Theorem A.10 applies and therefore & is weakly
closed. This means that if v, — wu, then u € .
O

Having established the existence of such minimisers, next we will examine the form
of them. Our intuition from the continuous case indicates that near the origin a cone
is formed, while far away the minimiser is of constant modulus, equal to one. The
advantage of the non-smooth case is the simplicity of the potential, and in that case we
can be more specific about the form of the minimisers.

Proposition 3.25. Let a minimiser u € HY (Bg(0); C) of &p,(0) such that Tr u(Re™)

= e, Function u is harmonic in parts in Br(0)\{0} and has a continuous represen-
tative in the same set. In fact, for the radial part we have:

p(r) =cr+ 2 ywhenever p<l1
r

Proof. We will work in steps.

Step I: Lets denote with p the radial part of u. Because of the Sobolev embedding,
p can be considered continuous away from the origin. Therefore, for each 0 < ¢ < R:

H'(s,R) = W"(¢, R) > C([¢, R])

In a similar fashion, the angular part of u is continuous too. Moreover, by Lemma g.23,
p is bounded by 1, and in fact p obtains this value, because of the boundary conditions.
Of course, we do not know if p becomes 1 right at the boundary or a little before.

Step II: Whenever 0 < p < 1, u is harmonic. Our analysis uses the polar repre-
sentation of the derivative, so we must restrict ourselves in an anulus of the form A =
B, (0)\Bs, (0), that is dy < p < ro. We consider ¢ € C°(A; B1(0)) _, and € > 0 small
enough so that |u+¢e¢| < 1. Because of minimality, we have &g, o) (v) < Ep,0)(u+cp),
and from this follows:

1 1
/§|Vu|2 dr < / §|V(u—|—5g0)|2 dx
A A

One immediate way to obtain the harmonic condition is to use the principle of symmet-
ric criticality. Another, more elementary way, follows: Using the polar form of the
derivative, we get:

1 "0 /12 1 2 1 0 / /12 1 2
3 lP'l"+ —p rdr<§ 10" +ep,l” + —lp+epyl” ) rdr
8o r 50 r
_1 " ‘/|2_’_2 /. /+2‘/|2
_2 5 p 8p pgp € p(p
0

1
+ 5 (10 + 25 po+ ) | ar
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where p,, is the radial part of ¢ (we omit fozw df = 27, since it appears on both sides of
the inequality). This shows:

0 1
0</§ [25p’«p;+82|p;!2+r—2(25p~p¢+52|p@]2) rdr=0
0

Dividing by € and letting € — 0, we obtain:
"o / / 1
0< TP - Pyt —ppydr
do r

Integration by parts gives:

7’0 1
0</‘(4ﬂ—ﬂ+—@-%dr
5o r

and interchanging ¢ ~» —¢:

T0 1
/ (—rp” —p+ ;p) - pp dr =0, forall p € C° (A; Bl(O))md
)

Therefore:

1 1
_p// . _p/ + _2p = O7 for r € (507T0>
r r

The general solution of the equation above is:
c1r + g
r

so if A is maximal, that is p(dg) = p(ro) = 1, then ¢y, ¢ can be found.

1 and 507"0
= cy =
! 50 + 7o 2 50 + 70
Both r¢? and ¢ /r are harmonic on the plane, so u is harmonic too. O

Just for the sake of convenience, the section p = ¢y +ca/r, ¢1, c2 # 0, of a minimiser
will be called a chasm. If ¢, = 0, that is p is linear, we will call this part of v a cone.
By these definitions, a minimiser can be a combination of a cone, chasms or constant
modulus parts only.

Proposition §.26 (Minimisers in 2—dimensions, under symmetry hypotheses). Let a
minimiser u € H. ,(Br(0);C) of Epyo) such that Tr u(Re®) = €. The following
hold.:

i. If R > 1, then minimiser u is a cone from the origin 0 to 0B, (0), followed by a
unitary modulus function until 0Bg(0).

ii. If R < 1, then minimiser u is a cone from the origin 0 to OBg(0).
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Figure g.11: The radial profile of a cone, a chasm and a constant modulus function.

Proof. The proof is rather calculation-heavy. We will work in several steps.

It is useful to do some computations before we continue with our proof. First off,
suppose we have a cone u = re? /A. By using Green’s formula in each coordinate, the
energy in an annulus A = B,,(0)\B,, (0) is:

/A|Vu\2+W(u) d:c—/aA (9) dS+/AW(u) dz

2 ! 2 2
= —dS—/ — dS+m7(ry —r
/aBrzm) A? 0B,,(0) A =)

2
= S =)+ 703 ) (319)

Then, we suppose v is a chasm in an annulus A as before, with:

Co 1 179
p=cr+ —, where ¢, = , Cg =
T 1 + T2 (&1 + T2

The energy in A is:

/ Vul? + W () do
A

3u> /
u,— ) dS+ | W(u) dz
/8A< 87” A ( )
) fog)
0By, (0) A ry
c

o —T L —T2 2 2
2mr — + 7 (r r
2r2(r1+r2) 1r1(7"1+r2) (ry = i)
r2—" 2 2
=47 m(rs —r .20
"+ 1 (73 1) (3.20)

Finally, if u is of unitary modulus in annulus A, where A is as before, then the energy
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in A is:

T2 1
/ |Vul? + W(u) do = 27?/ - dS
A T

T1
= 27 log 2 (3.21)
1
Our sketch is as follows: Firstly, we prove that sufficiently close to the origin u is a
cone. Then, we show that a cone followed by a chasm can by replaced by a cone, with
strictly less energy. Continuing, if a cone is followed by a constant modulus part, we
prove that again it is preferable to use a single cone.

Step I: Sufficiently close to the origin, u is a cone. We need to show two things:
First, no chasms are present inside some ball Bg,(0) and second in this ball u is not of
constant modulus.

Notice that using polar coordinates we get:

1 1
/ P12+ =p® dv < 00 = —p* < 00 = liminfp =0
B (0) r Br(0) 0
because of the finite energy. Therefore, constant parts do not exists arbitrarily close

to the origin, and if the non-existence of chasms is to be proved, it follows that near 0
minimiser u is a cone.

We suppose a sequence of chasms exists such that liminf,_,o p = 0. Denoting by 4,
ro the radii of the chasm, we will calculate the minimum value of the radial component

of each of them. We have:

_dp 1 i
a dT ™ -+ D) 7’2

and this is true if and only if » = |/riry. It follows that this value of r is where the local

mimimum appears. Now we obtain:

0

2./rr
min p= L2
Bry (0)\Br; (0) T+ T
and if we denote A = ry/ry:
2v/\

min =
Bry (0)\By, (0) P=N +1

The limit infimum lim inf, o p = 0 allows us to assume, without loss of generality, that
A — 0.

Coming back to the energies, by (3.19) and (3.20):

A—1 A—00

%:%Chasm—%cone:47r)\+1 — 21 = 2r

so chasms cannot appear arbirtarily close to 0, in some ball Bg,(0). Of course we can
assume Ry < R, because of the boundary conditions.

Step I1: If a cone is followed by a chasm, the whole configuration can be replaced
by a cone. Indeed, we compare the cone of radius Ry and chasm of edges Ry, 1, with a
cone of radius 1. By (3.19), (3.20):

A_1>0

& = %conc+chasm - %conc = 47T/\ 1 >
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Figure g.12

therefore, a single cone is prefered. This is basically a proof that a minimiser accends
to 1 and meets only the parts of constant modulus.

Step I1I: We will show that if R > 1, then Ry = 1, whereas if R < 1, then Ry = R.
Suppose then R > 1: The general configuration is a cone of radius Ry, followed by a
unitary constant function until r;.

By considering all the possible values of Ry (by varying R;), we want to find the
optimum, that is the value Ry for which the corresponding function « minimises the

energy. From (3.19), (3.21):

& = Eone + Eeonst = 27 + TRS + 21 log % =21 + 7R} + 2wlogr, — 2wlog Ry
0

and this shows that to minimise & we have to minimise:
f(Ro) = Rj — 2log Ry

It is easy to see that if Ry can obtain the value 1, that is ; > 1, then the minimum is at
Ry = 1. If r; < 1, then similarly f minimises at the largest possible value for Ry, that is
Ry = 1. But then we obtain a sequence of a cone and a chasm, which can be replaced
by a cone of bigger radius, as shown before in Step i.II. In any case, either immediately
or by “crawling” towards 0B1(0), we find that « is a cone from the origin to 9B (0).

If we suppose R < 1, the argument is as before: f minimises at the largest possible
value for Ry, that is Ry = R.

Figure g.13

To end this proof, we will show that no chasms are present outside B;(0) and no
chasms can lie on either side of 9B;(0).

Step 1V: We will show that if v > 1, it is not optimal to use a chasm in the comple-
ment C\ B,,(0). Comparing the energies &upasm, Seonst We get:

A—1

A+1

& = Ehasm — Eeonst = 4T + (A% — 1)r? —27log A > m(A* — 1) — 2w log A
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with the latter being monotone increasing and 0 when A = 1. So & > 0.

Step V: The previous step shows that no chasms exists in whole outside B;(0). Of
course, there is a possibility the chasm lies on either side of 9B;(0), which we must ex-
clude. We will show that, if a chasm exists on either side of 9B, (0), say in B,,(0)\ B, (0),
the function which is a cone until 9B;(0) and constant afterwards, has less energy.

Indeed, notice that just like in Step II this chasm configuration can be replaced by a
cone until 0B,,(0). Then, as in Step III, the cone until 9B;(0) followed by the constant
modulus has less energy. O

9.2.3 Minimisers under symmetry hypotheses (n-D case)

The problem is similar in arbitrary n—dimensions. In this section we will examine the
H'(Bg(0); R™) minimisers of:

1
Epr0)(v) =/ §\W\2+W(u) dz, Br(0) CR"
Br(0)

that are radial. The radial condition means that v(rs) = p(r)s, for every s € S*~! and
some function p : (0,00) — (0, 00) of one variable (which is the radial part of v). There
is, of course, an ambiguity here, as to what Vv and |Vv| mean when v is a function
v : Br(0) — R", Bg(0) € R™ Some authors explicitly avoid this case, staying on
R? = C, so to avoid computational complications. In our case, Vv is the differential
(Jacobian) and |Vo| the Frobenius norm ||Vo||g, that is:

Vol = [VollE =)

i?j

2

an
aﬂfj

Lemma g.29 practically remains unchainged, since its proof is identical. We restate
it below:

Lemma g.2%. Let u : R" — C be an H}

27 oe(R™ C) function. Then the projection on the
closed ball B1(0):

oy {u/w, il > 1

u if lu| <1

18 1—Lipschatz:
|Pu — Pv| < |u —v|

Moreover, by composition Pu € H. (R™; C) and:

IV Pu| < |Vl

Notice that in Section g.2.2 a very useful tool was the polar form of the gradient
Vu. There is a sort of an analogue in many dimensions, which we explain thoroughly in
Appendix B. If v(rs) = p(r)s for every s € S"1:

p(r)
r
Here p is the radial part, » = |z| the radius, s = x/|z| the angular and ® represents
the tensor product. We view it as the matrix s ® s = (s;s;); ;. The norm of this gradient
can be computed to be:

Vo=p(r)-s®s+ (Id — s® s)

2 n—1

Vol = (4(1)" + =)
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The existence of such minimisers in the n—dimensional case follows as in Theorem
3.24. We will only state a small difference, since the whole remaining proof is identical.

Theorem 3.28 (Existence of H,;(Br(0); R") minimisers for the non-smooth poten-

tial - n—dimensional). There exists a minimiser of:
1
Boao(e) = [ SIVOP+W(w do, Be(0) CR"
Br(0) 2

in the class:

A ={ve H,y(Br(0);R") | Trv(rs) = s forall s € S"' when r = R}

Proof. Only a small difference exists in Step I, which is the use of v(rs) = rs/R instead
of v(re?) = re /R. Using the general formula for the gradient:

1
Eruo ()= [ SVl W) do
Br(0)

R pr2n 1
:/ / —|Vv|2+1> r-d dr
6=0
— 1 -df d
//90 2R2+ r r

< oo (depending on n, 7, R)

Therefore:
0< ig{f Epp(0)(v) < 00

The remaining Steps IT and III are independent of dimension and can be repeated. In
Step IV we replace & with:

B = {v e L*(Bg(0);R") | Tr v(Rs) = s}
O]

In the 2—dimensional case what we essentially achieved was to reduce the problem in
an 1—dimensional one, concerning the radius. If the case is the same for n—dimensions,
our problem will be on a right track. In what follows we once again show that minimisers
are harmonic in parts in Br(0)\{0} and we extract a formula for the radial part, as in
Proposition g.25.

Proposition §.29. Lel a minimiser u € H}ad(BR(O);R") of &gy such that
Tr u(Rs) = s for each s € S""'. Function u is harmonic in parts in Br(0)\{0}
and has a continuous representative in the same set. In fact, for the radial part we
have:

1—-n

p(r) = cir + cor whenever p < 1
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Proof. As in the 2—dimensional case, for each 0 < ¢ < R:
H'(e,R) = W'?(¢,R) == C([&, R))

In a similar fashion, the angular part of w is continuous too.

Whenever 0 < p < 1, uis harmonic. Our analysis uses the spherical representation of
the derivative, so we must restrict ourselves in an anulus of the form A = B, (0)\ Bs,(0),
that is dy < p < ro. We consider ¢ € C°(A; B1(0))_, and € > 0 small enough so that
lu+ eg| < 1. Because of minimality, we have &g, () (u) < Ep,0)(u + ¢), and from this
follows:

1 1
/ 5’VU,2 dx < / §|V(u +ep)|? dx
A A

Once again, an immediate way to obtain the harmonic condition is to use the principle
of symmetric criticality. To obtain the exact form of p, we use the spherical form of the
gradient and we get once again:

1 [ n—1,\ . 1 o n—1 .
5/ <|/7/|2+TP2)7’ 1d7"<§/ <\Pl+5/):o|2+ 2 |/7+€,0so|2>7" bdr

5() 60 r
1 "o /12 / / 21 /12
25/5 [Ipl +2ep" - pl, + €%,
0
n—1

+

r2 (1o + 2ep - pp + €°|py?) }r"‘l dr
where p,, is the radial part of ¢ (we omit fSn_l dS = Vol,_1S""1, since it appears on
both sides of the inequality). This shows that:

"o n—1 .
O</60 {25p'-p;+521p;]2+ - (25p-p¢+€2|p¥,|2)}r Ydr=0

Dividing by € and letting ¢ — 0, we obtain:

To
0< /5 I pl, (= )" py dr
0

Integration by parts gives:
T0
0< / (=" " = (n=1)r" 20 + (n— 1)1 p) - p,, dr
o

and interchanging ¢ ~» —¢:

rad

To
/ (=" " = (n=1)r"2p + (n— 1)1 p) - p, dr = 0, for all ¢ € C°(A; B;(0))
do

Therefore:
, n—1, n-—
—p = P+
T r

1
p =0, forr € (d,ro)
The general solution of the equation above is:

c1r + cort ™"

Observe that if n = 2, we obtain the formula of Proposition g.25:

_ Co
ar+crtt=cr + —
r
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If A is maximal, that is p(dy) = p(r9) = 1, then ¢y, co can be found, by solving this
system. We get:

rot —opt and ¢y — (ro — d0)(rod0)™~

n n n
— 45 T8 — 0p

C1 =

]

Once again, if the radial part of our minimiser is of the form c;7 + cor'™", ¢1, ¢y # 0,
then we will call it a ehasm . To connect with the 2—dimensional case, if ¢, = 0, we will
the call minimiser a cone . Our minimiser can be a combination of a cone, chasms or
constant modulus parts.

Proposition .90 (Minimisers in n—dimensions, under symmetry hypotheses). Let
n > 3 and a minimiser v € HY, (Bgr(0);R") of Ep0) such that Tr u(Rs) = s for
every s € S"~L. The following hold:

i. If R > 1, then minimiser u is a cone from the origin 0 to 0B;(0), followed by a
unitary modulus function until OBg(0).

vi. If R < 1, then minimiser u is a cone from the origin 0 to OBg(0).

Proof. We will closely follow the proof of Proposition §.26, making nessesary modifica-
tions whenever needed. There are significant differences, mostly concerning the energy
of contant modulus parts. Here the associated energy is not logarithmic but polynomial.

First some computations as before. In what follows, we denote:

27Tn/2 7.‘_n/2 1
=Vol,(B =——=-5
T(ny2) 24 Ve = Vol (Bi0) = 5 7y = 5

Suppose A = B,,(0)\B,,(0) is an annulus, with A\ = /7. Suppose u is a cone, that is
p = cr. Using Green’s formula in each coordinate, the energy of the cone becomes:

/A|Vu|2 + W(u) do = /aA <u, %> dr +/AW(u) dx

= / Erdr + Vo (ry —r})
DA
= Sp 1y — ™) + Vo (ry — ) (3.22)

Sn,1 = VOlnfl(Snil) =

We suppose u is a chasm in an annulus A, with:

1-n ry = (rg — 1) (rary)"
p=cCir + cor wherec; = 2——— ¢y =
? n n ) n n
ry—r ry—r
2 1 2 1

The energy in A is:

/\Vu|2+W —/ dr—l—/W
oA
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[...] = Sna(ry —17) <c§ + w) + Vo (ry —r})

(rira)”
= (g = (0= D e — Y]
+ Vo (ry — )
= % (A" =12+ (n = DA 2N = 1] 2+ V(A = 1)} (3.23)

Finally, if u is of unitary modulus in annulus A, where A is as before, then the energy
in A becomes:

= (n — 1)r" % dSdr

71 Sn—1

Sp—1(n—1) e
= %(A 2= Dy (3.24)

Step I: Sufficiently close to the origin, u is a cone. We need to show two things:

First, no chasms are present inside some ball Bg,(0) and second in this ball u is not of
constant modulus.

Once again we have

1 1
/ P>+ =p? dz < 00 = —p* < 0o = liminfp =0
Bgr(0 r Br(0) T r—0
Therefore, constant parts do not exists arbitrarily close to the origin, and if the non-
existence of chasms is to be proved, it follows that near 0 minimiser u is a cone.

We suppose a sequence of chasms exists such that liminf,_,, p = 0. Denoting by 4,
ro the radii of the chasm, we will calculate the minimum value of the radial component
of each of them. We have:

d
Ozd—'i:cl—i—cz(l—n)r’":O

and this is true if and only if:

co(1—n)\" n—1)(rs — r1)(rire)" "1\ "
T:(_ (1 ))/:(( 1)( )(r172) )

c (rp~t =37t

Now by setting A = r5/r; we obtain:

o (g

It follows that this value of r is where the local mimimum appears. We get:

, | [(n (A — 1)Anl]i
min p=
By (0)\By, (0) A —1 A1 —1
O [(n 1) — 1))\"‘1] E
-1 A1
_ O()\—I—O—l/n)
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The limit infimum lim inf, , p = 0 allows us to assume, without loss of generality, that
A — 00.

Coming back to the energies, by (3.22) and (3.23) one can check:

% = %chasm - %cone = % [()‘nil - 1>2 + (n - 1))\”72(>\ - 1)2} 7‘1”72
+ VAl — S, g2

= [O(X")r} + O(X\"*)]r{7? > 0 (for large \)

so chasms cannot appear arbirtarily close to 0, in some ball Bg,(0). Of course we can
assume Ry < R, because of the boundary conditions.

Step II: If a cone is followed by a chasm, the whole configuration can be replaced
by a cone. Indeed, we compare the cone of radius Ry and chasm of edges Ry, 1, with a
cone of radius r;. By (3.22), (3.23):

& = %cone—i—chasm - %cone
Sn—l

An—1

Now denote f,,(\) the term inside the bracket. We have:

(A =12+ (= DA 2N = 1) = (A" = (A" = 1) ]2

faQ)=A=12[AN" 7+ 1)+ (= DA (A" P+ DA+ 1)

with the first sum product having all the terms of the last plus some. Therefore, & > 0
and a single cone is prefered.

Step II1: We can show that if R > 1, then Ry = 1, whereas if R < 1, then Ry = R.
By considering the energy & = &.one + Eeonst; We want to find where it minimises, just
like in Proposition g.26. We have:

_Sn—1< 2 n ) neo , Snan—=1)
& = - R; p— R+ — ]

The first term, which is of interest, is monotone decreasing until Ry = 1 and monotone
increasing afterwards. It follows that, if R > 1, the minimisation occurs at Ry = 1,
whereas if R < 1, at Ry = R.

Step IV: We will show that if r; > 1, it is not optimal to use a chasm in the comple-
ment C\ B,,(0). Comparing the energies &enasm, Geonst We get:

& = (gchasm - %const

S
=1 _11 [ =12 4+ (n— DA 2\ = 122 + V(A — 1)y
Sp—1(n—1) .
Sl ey
_ Sn—l _<)\n71 . 1)2 + (TL . 1))\7172()\ _ 1)2 . n — 1<)\n—2 - 1)()\71 _ 1) rnfg
A —11 n—2 1
+ V(A" = D)}
> Ai”_ll 5(A” — 1?4+ (A" =124 (n— DATEN = 1)?
n—1
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Denote g,,(A) the term inside the brackets. We will show that g, (\) > f.(\), which in
turn means g, is positive. Observe that to prove g, — f,, = 0, we just need to show:

1 n—1
<N =12+ N2\ —1) — N2 (A —1
0< (N =1+ JA 1) = ) —1)
71 n_ 1\2 _ 1 n—2 n __
A IO AR VIURSEY
1 1 2
— n_l A\ n—2
(A )n)\ n—2>\ +n(n—2)

But then, the term inside the bracket is clearly positive. Hence, & > 0.

Step V: There is a possibility the chasm lies on either side of 9B;(0), which we
must exclude. We will show that, if a chasm exists on either side of 9B;(0), say in
B,,(0)\B,,(0), the function which is a cone until 0B;(0) and constant afterwards, has
less energy.

Indeed, notice that just like in Step II this chasm configuration can be replaced by a
cone until 0B,,(0). Then, as in Step III, the cone until 9B,(0) followed by the constant
modulus has less energy. ]






CHAPTER 4

The two phase interface

4.1 Minimal surfaces

Minimal surfaces are of big importance in phase transition problems. As we have already
mentioned, the usual definitions of energy:

2
%.(1: ) :/gwuyu%mu) d or &.(u; Q) :/%ywmwm) iz

contain some dependence on interface energy. The term |Vu| penalises abrupt changes,
so it is what encodes the interface energy (mostly). Potential W also plays a role away
from its minima.

In what follows we will define minimal surfaces and see some examples.

e

Figure 4.1

4-1.1  First variation of the area

Focusing on the linguistics of “minimal” surfaces, one might want to define them as
surfaces (or generally manifolds) that locally minimise the area (or volume in general).
It is however better to use the critical points of the area (or volume) functional, as they
are not just geometric objects, but important elements for the calculus of variations.



96 Chapter £. The two phase interface

The theorem which posseses the name “first variation of area” is characteristic for
the definition of minimal surfaces. For its statement, we need tangential divergence.
Suppose (#,7q) is a Riemannian manifold of dimension n + 1 and (3, g) and embedded
submanifold of dimension n. If X is a vector field along ¥ (not nessesarily tangent), we
define the tangential divergence:

Vix=3 (VX E)

Eg||%

where V = V9 and E;, || ¥ means vector fields that produce the tangent spaces on X.

Theorem 4.1 (First variation of area). Let (X,9) C (M,q) be an embedded sub-
manifold without border. We consider a flow © on M with infinitesimal generator
X =0% € CX(M;TM), and O4X) the moving surface 3 following ©. The first
variation of n—ovolume (area) of X2 becomes:

X" d
50

EACT /v X dS——n/E<X H) dS

where H is the mean curvature of X.

We write Z" (this is the Hausdorff measure) for the n—dimensional volume, instead
of Vol,,, as it is a usual.

Proof. We can restrict ourselves in the case of a single map, since the arguments are
similar in the more general case.
Step I: We will show:

d

%”@t /V°XdS

Here we will calculate the metric coefficients with respect to the tangent vector fields
to . We can assume, without loss of generality, that g; ; = J;; and Vg, E; = 0 on X.
The volume element of ©,(X), as a function of the volume element of 3, becomes:

det (g} ;)i
=S
det(gz‘,j)z‘,j

where ¢ is the metric on ©,(X). Therefore, if we are to calculate the first variation, we
must compute:
d det(gf,j)i,j
dtl=0 \/det(gi ;)i

which, in our case, (since g; ; = 5Z-j, ¢° = g) becomes:

1d
det gzg) - 5% A det(gzg)

dt

i 2,/det gZ L 0

Expand the determinant:

det(gz J Z g1 k det(gz g)wﬂ J#k

k=1
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and with a derivation:

7 det(gij%’j - .= —

t=0

Now, because:

dt
it follows:
=T

det(g)ig = > (Ve X, E) =V X

Ep|I=

which means: y

dt
Step II: We will show the equality:

/VT-X ds = —n/(X,H) ds
b b

By writing X = X" + X+, where X is parallel to ¥ and X+ perpendicular, we have:

H"(0,(%)) _/EVT-X ds

t=0

/ V'eXTdS =0
b
and then:

/VT-X alS=/VT~XL s
> >

Consider {n; }2_, a family of unitary orthogonal (to 3J) vectors, that produce the orthog-
onal complements of tangent spaces. We write the following:

Viext=v'. (Zp{, ﬁkmk)

k

=> <7EA DX, ﬁk>ﬁk,EA>

= Z <E,\<X, ng)ng 4 (X, ﬁk>vE>\ﬁka E,\>

kA

= (X, ) (Vi ik, En)
kA

But, since:
(Vg Tk, Ex) = Ex(fiy, E\) — (i, Vi, E\) = — (g, Vg, Ex)ig
we obtain:

=1 ~\ = ~
vV 'XJ_:—Z<X,TL]€><VE>\E)\,TZ]€>
k)

= —Z(X, ) <ZVEAEA;ﬁk>
- _ Z <<X,ﬁk>ﬁk, <ZvEAE/\,/ﬁk> ﬁk>

=—n(X, H)
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Hence:
(/vRXdS:—n/C&HMB
b by

]

A consequence of this theorem is the following remark, that connects local minimi-
sation of area with mean curvature.

Remark 4.2. Suppose again we have (¥, g) C (M ,q), without border. We consider the
following conditions:

. ForeveryopensetU € M, UNYE € X and for every variation N withUNN € N,

Y\U = W/\U, we have:
(X)L H(N)

(a small “compact” variation increases the volume).

. It holds:
‘/V1Xd5:0
>

vit. On ¥ we have H = 0.
w. The volume functional has a critical point on 3.

Then, 1. = 1. < 1. & .

Figure 4.2

Definition 4.9 (Minimal surfaces). Let (3, g) be an embedded submanifold of (M, 7).
We will say that ¥ a minimal surface if it is a critical point of the volume functional.
According to Remark 4.2, minimal surfaces are exactly those for which H = 0 on
Y\bdX.
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4-1.2  Holomorphie representation and some examples

From here on we study surfaces ¥ in R", n > 2, and especially in R?, that have a
parametric form. That is, we are interested in surfaces ¥ = {f(z,y)}, (z,y) € 2 C R%

We want to see some corellation between parametric surfaces and the real / imagi-
nary parts of some holomorphic functions. In this direction, the following lemma is of
importance. We note that a very natural metric can be obtained by >, which is:

i, (%) = gu(ei, e5) = (0 f(x),0; f(x))

Lemma 4.4. Let > = {f(x,y)}, [ : Q — R?, be a parametric conformal surface in R>.
If g is the metric defined above, then:

1. We have:
A,f =2H

1. Especially, ¥ is a parametric minimal surface if and only if Ayf = 0.

111. We have:

Af = 2\/ det(gm)i,jH

w. Especially, > is a parametric minimal surface if and only if Af = 0.

Proof. We only need to prove i. and iii. Since the statement is local, we may assume f
is an embedding. We consider the position vector p;(x) = z; and then Vp; is constant
in R” and is equal to the i—th basis element. Consider the general fact of the intristic
(tangential) Laplace operator Ay(p o f) = (ATp) o f and the decomposition Vp; =
V' p; + V1p;. In the proof of Theorem 4.1 we have seen that V'-X+ = —n(X, H), so
along with our previous observations:

gfz—( pi)of
(

This concludes i. As for iii., by conformality we have g; ; = Ad;; for some X : Q@ —
[0,00) (in fact, since f is an immersion, A > 0, and g/ = A7'4; ;). By computing the
determinant of the metric, we obtain:

det(gi;)ij = A2
By the coordinate form of the Laplace operator:

Agu = \/W” 18 (\/det 9ii)ijg" au>

the result follows. O
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Theorem 4.5 (Holomorphic representation). Let 3 = {f(x,y)} be a conformal para-
metric surface in R™ with f : Q — R", and Q C R? simply connected. Then ¥ is a
parametric minimal surface if and only if f = Rh for some non-constant holomorphic
function h : Q — C" such that:

"L [ ORhy, ,8%hk>2_ _
Z( B + 1 o =01

k=1

Moreover, ¥ = {Sh(x,y)} is a parametric minimal surface, called the conjugate of
DI

Proof. The proof will be done in several steps.
Step I: We first establish:

Af=0in Q< f=Rh, h:Q — C" holomorphic (4-1)

(=) Given f, we need to find some g such that the Cauchy-Riemann equations hold.
That is:

g _ Ofi
or 6y
o9 _ O
oy Oz

This means that there exists some function g, with gradient:
Ofi 3fk>
VG = <——, -
g dy’ O

that is, the potetial of the following function exists Fj, = (—0f/0y, 0fx/0x). Therefore,
for every simply connected set B:

Ofk Of /3afk 8( 3fk) /
0= [ (Vg de :/ e L Ly A A dA= [ Af, dA
/aB< gedl) = | oy T e W | Grar oy \ oy 5

(by Green’s theorem). The above computations show that a necessary and sufficient
condition for g to existis Af = 0.

(«=) The other direction follows from Cauchy-Riemann equations.

Step II: Next up, we will show that if h = f + ig, with A being holomorphic, then f
is conformal. We have:

- 8i)%hk 8%}1]@)2_ - <afk 8gk> —
Z(@x T ox :0<:>; (9QJ+ ox =0

k=1

afl* logl* . <af ag> _
af| _ |99 <ﬁ @> _
< ox| |0z and ox’ Ox =0
of| |of <af af>
< oy '83/ and {55,/ ="
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The last condition is exactly what establishes the conformality of f.

Last but not least, ¥* = {Sh(z,y)} is a conformal parametric surface, since Sh =
R(—ih). O

Utilising Theorem 4.5, we can give a couple of examples of conformal parametric
minimal surfaces.

The first example is that of the Catenoid. If:

cosh z
h(z) =a | i-sinhz |, aeR

z

then:
3

Z <63‘Ehk N ,8%hk>2
ox ! ox

k=1

0

and f = Rh is conformal parametric minimal surface. In fact, if we use the relations:

cosh(x + iy) = coshz cosy + isinh xsiny

sinh(x + iy) = sinh z cosy 4 i cosh x siny

we obtain:
cosh x cosy

f(z,y) =a | —coshasiny
x

The second example is the conjugate of the first, that is the Helicoid. Function
g = Sh is a conformal minimal surface, and as before we can show:

sinh z siny
g(x,y) =a | sinhzcosy

Y

In the end, we mention an independent example (which is interesting due to the
existence of self-intersection). This is Henneberg’s suface. If

—1+ cosh(2z)
h(z) = | —i(coshz+ 1cosh(3z)/3)
— sinh z 4 sinh(3z)/3

we set f = Rh. In real coordinates:

—1 + cosh(2z) cos(2y)
flz,y) = sinh z sin y + sinh(3z) sin(3y) /3
— sinh z cos y + sinh(3x) cos(3y)/3
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Figure 4.5: Henneberg surface

4.2 T'-convergence

Lets suppose we have some family of functionals J,, which converge to some other,
say J. A usual problem in the calculus of variations is the following: Given a family of
functions {uy }x, with limit u, such that u; minimise J, can we conclude that « minimises
J; Of course, the answer is negative.

An indicative example follows: In H}([0,1]), of H'—functions, vanishing on the
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boundary, we consider J : HJ ([0, 1]) — [0, oo]:

and we define J:

Jo(u) = J(u), if v’ constant in each (i/(2k), (i +1)/(2k)), i < 2k — 1
R 00, otherwise

Then, the following jagged functions u; minimise J;. Moreover, u; — 0 (uniformly) and
U1

U9
usg

Figure 4.6

Jp(v) — J(v) almost everywhere, for every jagged or constant function. However, to
our bad luck, u = 0 does not minimise J(u). The problem lies in the form of convergence,
and specifically that we do not have I'—convergence (a good reference is [29]).

Definition 4.6 (I'—convergence). Let X be a Hausdorff and first countable topological
space, and Jy, : X — R be a family of functionals in L. We say that Jy, I'—converge
to some J : X — R if:

t. There exists an asymptotic common lower bound: For every f € X and for
every sequence { fi}r with fr — fin L, we have:

1. There exists approximating sequences: For every f € X there exists a se-
quence { fr}r with fr — fin X and:

J(z) = lim Ji(f)
k—oo
or, equivalently:

J(f) = limsup Ji(fx)

k—o00

If Ji, T'—converge to J, we write:

J=T-lim J, §J, 5 J
k—oo




104 Chapter 4. The two phase interface

Theorem 4.7 (Fundamental theorem of I'—convergence). Let 2 be a Hausdorff' and
first countable topological space, and Jy, : L — R a family of functionals in X'. If

Ji LN J, J: XL = Rand f, € X minimise Jy, then the limit fi, — f minimises J.

As we saw in the previous example, there exist families of functionals which con-
verge, but their minimisers do not converge to a minimiser of the limit. There is a
phenomenon behind this discrepancy, which is lower semi-continuity.

Definition 4.8 (Lower semi-continuity). Let & be a Hausdorff and first countable
topological space, and J : & — R a functional. We say that J is lower semi-

continuous if:
fe = f=J(f) < likmian(fk)
—00

Equivalently, J='((—o0,t]) are closed in X .

Figure 4.7: An example of a lower semi-continuous function (left) and another which is
not (right).

Below we see that the limit must necessarily be lower continuous if we aim to some
['—convergence. This is logical, if we imagine functionals J; that approximate J, with
their minimisers tending towards the non-lower semi-continuous part of .J.

Definition 4.9 (Epigraph). Let & be a topological space and J : X — R a functional.
We define the epigraph:

epi(J) = {(f.j) € L xR |j = J(f)}

Remark 4.10. A functional J : & — R is lower semi-continuous if and only if epi(J) is
closed in L x R.



4.2 I'-convergence 105

Figure 4.8

Definition 4.11 (Kuratowski limits). Let (2, d) be a metric space and { A}, a se-
quence of sets. We define the Kuratowsks limit supremum:

K-limsup Ay = {I el lilininf d(z, A,) = O}
— 00

k—o0

and, respectively, the limit infimum:

K~li£n inf Ay = {x € X | limsupd(z, 4,) = O}
—00

k—o0

If these two sets coincide, we say that the Kuratowsks limit exists and we write:

K- lim A, = K-limsup A, = K~lil£n inf Ay
—00

k—o0 k—00

We will see later how I'—convergence relates to these kind of limits. For the time
being, we mention some examples that indicates some geometric image and suggests
that Kuratowksi limits are logical.

For the first example, we set:
Ay = {(z,y) € R* | [z]" + [y[" < 1}
Then the Kuratowski limit exists and:

K- lim Ay = By = {(w,y) € R? | [o] < 1, |y| <1}
—00

For the second example, we set:

1
Ak - EZ2
Then the Kuratowski limit exists and:
K- lim A, = R?

k—o00

The third and last example is different. Consider B = B((0,1/4),1/2) (The ball of
radius 1, translated by 1/4 on the right). By rotating B by 27k /n around the origin, we
obtain the sets:

Ak _ 6—2Trki/nB
Then:

K-limsup A; = U A
k=1

k—o0



106 Chapter £. The two phase interface

and:
K- ligniank ={(0,0)}

An image for n = 4 can be found below. In what follows we examine, for the sake
of simplicity, the motion of x = (0, 1).

€

The various distances d(z, Ay) become, as k varies:
170[707057170[707057170570705717'”

(where a < 1). Therefore = belongs to K- lim sup A but not to K- lim inf A.

Proposition 4.12. Let (2, d) be a metric space and J,, : X — R, J : L — R. Then
roo. :
Jr = J if and only if:
K-lim epi(.J;) = epi(J)

Proposition 4.13. Let (', d) be a metric space and J,, : X — R, J : £ — R. If
gy L J, then J is lower semi-continuous.

Proof. 1t J, 5 J, then:
K-lim epi(Jy) = epi(J)

But then Kuratowski limits are always closes, which means that epi(J) is closed. In
turn, J is lower semi-continuous. O

4.3 T'-convergence of the energy to the perimeter

The relation of the study of phase transition problems with the theory of minimal sur-
faces was examined by Modica [9], based on some work of Modica and Mortola [31],
ten years ago. In what follows we mention the basic concepts and the main theorem.
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Later, we also mention a similar result, established by Pacard and Ritoré [11], and later
improved by Pacard [10].

First, we define the notion of bounded variation in our context, in order to define the
perimeter functional next.

In real-valued scalar functions, the variation measures traverse in y—axes, that is:

[l

dx
The general case can be treated similarly, by:

[ 1wsldo

We can be more precise, by giving the following definition.

Definition 4.14 (Functions of bounded variation). Let (4, g) be a Riemannian man-
ifold and Q C M an open subset. Let u € L'(Q)) whose gradient can be represented by
a T —Radon measure, in the following sense: There exists a T M —Radon measure,
denoted by Du, such that for every X € C°(Q;TM):

/ﬂ(x, Du) = —/qu-X do

As far as (X, Du) is concerned, one can say that there exist some Radon measures
duy, such that:

and then:
(X, Du) / X*dy

If the total variaton:
/ | Du| = sup {/ uVeX do ‘ X eCr(TM), || X]|L- < 1}
) Q

is finite, we say that u is of bounded variation (the integral notation is not random,).
The set of all functions of bounded variation is denoted by BV (). The norm of this
space 18:

al vy = llulla + / Dul

Note that | Dul:
/ |Dul = sup {/ uVeX do | X € CR(VT M), (X < 1} veo
Vv 1%

is a Radon measure, which justifies the integral notation.
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The general idea behind this definition is as follows: Suppose we have some disc
whose perimeter must be measured. By taking a cross-section, the resulting set is an
iterval and the “perimeter” is some interval:

/(51+5le‘
R

(since the boudary consist of two points). Taking all cross-sections into account, one
obtains a continuum of Dirac “functions” along the perimeter of the disc.

/ 0B, (0) dA
R

This Dirac continuum, as in the one-dimensional case, can be achieved by differentiating
the characteristic function of the dise, in the sense of distributions.

Definition 4.15 (Perimeter and Cacciopoli sets). Let E be a borel subset of a Rieman-
nian manifold (M, g). We define the perimeter of E, when 15 has gradient viewed as
a T M —Radon measure, as:

Per(E;Q):/|D]lE|
Q

We say that E is a Cacciopoli set if Per(F; Q) < oc.

It is important to clarify that the Hausdorff measure &' of the boundary OF is -in
general- not the same as the perimeter Per of E.

We restrict ourselves in the case {2 = R™. The reduced boundary 0*FE of E is the set

of all points z for which:

im ———"

m™\0 [ D1g| (B, (z))
has modulus 1. In fact we have 0*E C OF. The following remark shows that the
perimeter of E is more related to the reduced boundary 0*E, rather than 0F.

e R"”

Remark 4.16 (De Giorgi’s theorem). Let E C R" be a Cacciopoli set. It holds that:
Per(E;R") = Z" ' (0*E)

Other that this theorem above, the equality of perimeter and Hausdorff measure can
be achieved under weak assumptions on the regularity of the boundary (cf. [28]). One
known condition is that of the Lipschitz boundary.

We are now able to state the theorem of Modica, concerning I'—convergence (cf. [9]
and [5]).

Theorem 4.17 (Modica). Let 2 C R"™ be a bounded Lipshitz Cacciopoli set. Consider
the family of functionals &. of the energies with interfacial constant ¢ (as in the first
chapter):
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1
&.(u; Q) = / §|Vu|2+—W(u) dx
Q g

Potential W must be a two-well potential with two minima at £1, where W(£1) =0
and W > 0 everywhere else. Then &. T'—converge, with respect to the L' (Q)—topology,
to the weighted perimeter functional oPer({O = 1};Q) (where o = fjl V2W (z) dz,
constant).

&.(0:Q) 5 Per({0 = 1}: Q)

This is a theorem that is proven using almost exclusively methods of the calculus of
variations and analysis. There is another similar theorem to this one, which is proven
for Riemannian manifolds and uses techiques from differential geometry and differential
equations. First proven by Parard and Ritoré [11], its proof was significantly improved
some years later by Pacard [10] (using ideas that emmerged in the meantime).

Theorem 4.18 (Pacard-Ritoré). Suppose (M, g) is a compact Riemannian manifold
of dimension n + 1, without boundary. Let ¥ C M be a non-degenerate, oriented
minimal surface of dimension n, which seperates the manifold M\E = M U M.
The normal vector that indicates the orientation of X points towards M *. Then, there
exists some €y > 0 such that for every 0 < ¢ < gy there exists a solution u. of the
e—problem (of the Allen-Cahn equation) such that:

Ue = Ly+ — 1 4-

uniformly in compact subsets of M+, M~, as e — 0. Moreover, for the energy we

have: |
lim &.(u.) = —
Jim &-(ue) = 75

e<ep

Z" (%)
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CHAPTER A

Appendix: Analysis

A.1  Differential equations

Theorem A.1 (Extension lemma, [22], Thm. 2.1, pp. 17). If D is any open set in
R f: D — R™ 4s continuous and bounded on D, then any solution of:

'(t) = f(t,x)

defined on some interval (a,b) is such that x(a+), x(b—) exist. Also, if from now
on f is just continuous, there exists a continuation of x(t) to a maximal interval of
existence. If (a, b) is maximal, then (t,x(t)) tends to the boundary of D ast — a and
t—b.

Theorem A.2 (Composition with Lipschitz, [25], Cor. 4.14, pp. 47). Suppose X, Y
are Banach spaces and Q C R™ is open. Let 1 < p < oo, u € WIP(Q; X) and F :
X — Y be Lipschitz. If' Y has the Radon-Nikodym property, then Fou € WHP(Q;Y).
In particular, ||u|| € WP (Q;R)

Remark A.g. All Euclidean spaces X have the Radon-Nikodym property, which can be
stated in these two equivalent ways:

i. For any o—finite, complete measure space (Q, o, 1) the following holds: For any

vector measure v : A — X with bounded variation that is absolutely continuwous
with respect to u, there exists a function f € L'(Q, X, 1) such that:

z/(A):/Afdu, forall A e o

vi. Every Lipschitz function f : I — X (I being an interval) is differentiable almost
everywhere.
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Theorem A.4 (Sobolev embeddings, [20], Thm. 8.8, pp. 212). Let I be an interval.
There exists a constant C' = C(ZLY(I)) such that:

|| oo (1) < Cllullwromy, we WHP(I), 1 <p<oo
If I is bounded:
i. The injection WP (I) — C(I) is compact for all 1 < p < oo

it. The injection WH(I) — LI(I) is compact for all 1 < q < oo.

Theorem A.5 (General Sobolev inequalities, [21], Chpt. 5, Thm. 6, pp. 284). Let U
be a bounded open subset of R™, with C*—boundary. Assume u € W*P(U).

t. If n > kp, then uw € LY(U), where:

S
iR
S|

Moreover:
HU||LQ(U) < C(k?,l% n)HUHW’“’P(U)

ii. If n < kp, then u € C*=/PI=19(U), where:
{J -2 g
p p
<1, z’fﬁ eN
p

Moreover:
[l grtnms-10@) < C (ks pym, Y)||ullwes @)

Remark A.6 (A generalisation of Theorem A.5, [19], Theorem 4.12, pp. 85). 4 general-
tsation of Theorem A.5 exists, for sets salisfying some strong local Lipschitz condition.

Theorem A.7 (Poincaré-Wirtinger inequality and Poincaré inequality). Assume 1 <
p < 00, let 2 C R™ be bounded, connected and open, with Lipschitz boundary Then
there exists a constant C' = C(S2, p) such that if u € W'?(Q) and ugq = f,u(y) dy:

l|lu — UQHLP(Q) < CHVUHLP(Q)
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oo Moreover, if u € W, ?(Q), then:

[lullzo@) < ClIVullLoq)

Definition A.8 (Parabolic Holder spaces, [25], Sect. 2.1). Consider the parabolic
metric |p| = [t|'? + |z|, p = (t,z). For a function v : Q — R, defined on some
parabolic cylinder, we define the (§/2,0)—seminorm:

[u(p) — u(q)|
[uls/2s. = sup ——————
/ P#AEQ \p - q|6

The (6/2,0)—Holder norm is defined as:
lullesrsgy = lullz=@) + [uls/2s0

Moreover, the (14 6/2,2 + §)—seminorm is defined as:

[u]116/2.218:0 = [Oru]s/2,5:0 + Z [81‘,3‘“]5/2,5@

1,J

and, similarly, the (1 +0/2,2 + 0)—Holder norm becomes:

llullorrsrzs gy = ulle@) + 10uullz=(@) + ) 10:ull =)+

+ Z ||ai,ju||L°°(Q) + [u]1+6/2,2+6;Q
4,J

Another equivalent definition is that of:

[llsjps0= sup [u(t, z) —u(t,0)| s u(t, z) — u(t,y)|
. (tx)#(s,2)€Q |t — 5|/ (t2)£(ty)EQ |z — y|°

Theorem A.9 (LadyZenskaja-Solonnikov-Ural’ceva [24] and [25] - Combined re-
sults). Suppose u € C’;:WMH(Q) s a solution to a uniformly parabolic partial
differential equation:

Oy + Lu =0

u(0,2) € C**([a, b])
where Q = [a,b] x [0,T) is a parabolic cylinder. For every other parabolic cylinder
Q € Q we have estimates of the form:

HUHCtI;Lé/Z?Jfé(@) < C(A,é, d)HuHLoo(Q), o€ (0, 1)
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... Here A is the uniform parabolicity constant and d = dist(Q, @) 1t @s also true
that, as far as d is concerned, C' = O(d=279).

A.2 Functional analysis

Theorem A.10 ([20], Thm. 3.7, pp. 60). Let X be a Banach space and A C X. It is
not nessecerily true that every strongly closed set is weakly closed, but what is true is

that of A is convex:

A s strongly closed < A is weakly closed

Theorem A.11 (Lax-Milgram). Let H be Hilbert space and B : Hx H — R a bilinear
form. Suppose:

1. There exists constant C > 0 such that:

|B(u, v)| < Cllul] - [[v]|

1. There exists constant ¢ > 0 such that:
c||ul]* < B(u,u)

Let F: H — R be a bounded functional. Then there exists a unique u € H so

that:
B(u,v) = (F,v), Yv € H




CHAPTER B

Appendix: Geometry

B.1 Calculations

We remind the reader that Vv means either the gradient of v, if v is scalar, or the
differential (Jacobian), if v is vector valued v : R® — R™. In the latter case, the norm
|Vu| that appears when calculating energies is the Frobenius norm, which in general in

is defined as:
1/2
|AllF = (Z Aij) for A € R™"
4]

This norm is induced by the Frobenius inner product:

(A,B)p =Y Al B;;, A, BcR""
4]

Proposition B.1 (Spherical form of the gradient). Suppose v € H.(Br(0);R"),
that is, it is differentiable in the (1,2)—Sobolev sense and also v(rs) = p(r)s for all
s € S"~1. Then we have:

Vv—p/(r)-s@)s—i—@(ld—s@s)
and: I
Vol = (/)" + =5=7()

2
Here p is the radial part, depending on r = |x|, with s = x/|z| we denote the angular
part and @ is the tensor product. It can be viewed as the matrix s @ s = (8;5;); ;.

Proof. 1t is immediate that:
Vo=Vp®s+p&RVs

But since: .
Vp=pVr=/psand Vs = V% = ;(Id— s® s)

we obtain:

szp’(r)-s®s+@(ld—s®s)
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As for the modulus, notice the following: First, ||s ® s||r = 1, since:
IETES DD IERIME
i\j i j
Second, s ® s and Id — s ® s are orthogonal in the Frobenius inner product:
(s®@s,ld—s®@s)p = ZSiSj(éiJ’ — 8;8j) = ZSZQ — Zs?s? =0
i,j i 1]
Third, the norm of Id — s ® s is:
I[1d — s ® s||F = Z(éi,j — 8i8;)° = Z(Szj — 20885+ sis;=n—2+1=n—1
1,J 1,J
Gathering all of these, we obtain the desired result:

Vol = (5())" + " ()

B.2 The principle of symmetric eriticality

There was a general belief in physics, that to find the critical points of a functional
F : M — R, one needed just to study F' not in the whole space, but just in all symmetric
points. That is, to find all points such that (F,), = 0, just find the critical points of F|s,
where S = {p € M | gp = p, Vg € G}, for some group of symmetries G acting on .
In this generality, this naive principle does not hold. It does hold, however, for certain
cases of symmetry groups G and spaces ./ .

From now on, ./ will be a Riemann-Hilbert manifold, that is a manifold that is
locally diffeomorphic to a finite or even infinite dimensional Hilbert space, and there
exists an inner product (-,-), on each tangent space 7,4, varying smoothly with p in
the tangent bundle 7T.Z. Also, G will be a group acting by diffeomorphisms on . and
a group of isometries G < Isom(.#). The last definition means that the pushforward
(9+)p : Tyl — T,, M preserves inner products.

The main theorem is the following (cf. [32]):

Theorem B.2 (The principle of symmetric criticality). Let G and A be as before, and
F :ul — R. Then the set of symmetric poinls:

S={ped|gp=p, VgeG}

is a totally geodesic smooth submanifold of M, and if p € S is a critical point of F|g,
then it is a critical point of F too.

Proof. Tt is a general fact that exp(g.), = goexp, so the representation ¢g*® = exp~! ogo
exp is linear and orthogonal. In particular, S intersects the domain of geodesic normal
coordinates at p in a linear subspace, which is:

{ve T | (9.)p(v) = v, Vg € G}



It is therefore clear that S is a smooth submanifold of .Z. This also shows that any
geodesic with tangent v at p is left pointwise fixed by all g € G.

Now, by assumption, (VF), is orthogonal to 7,,S and if we show (VF), € 7,5,
we will conclude the proof. Why (VF), is orthogonal to S, is a consequence of the
definitions. Remember that in general:

(Fy)p(v) = (v, (VF),),, forallv e T,/

(in our case, the manifold is S). Then observe that (¢.),(VF), = (VF),, = (VF),
for all ¢ € G, and therefore the geodesic emanating from p in the direction (VF), is
pointwise fixed under all g € G. The formula before is a consequence of the chain rule
for G—invariant F', (F), = (F 0 ). = (F\)gp © (9+)p, and the fact that (g.), maps T,.#
onto Ty, isometrically: Indeed:

(F)p(v) = (v, (VE)p)p and (E.)gp 0 (9:)p(v) = ((9:)(0), (VE)gp)y

hence (g.),(VE), = (VF)gp.
In conclusion, the geodesic lies inside S and (VF'), € T,S. O

Some counterexamples for the completely general principle can be found in [32].
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