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CHAPTER 1

The Jacobi Equation

1.1 The Jacobi Equation

Definition 1.1 Let (), g) be a Riemannian manifold and let y: I — M be a geodesic. A
variation I': K x I — M of v will be called a variation through geodesics if each main
curve I'; is a geodesic.

Example 1.1 We refer the reader to the book [4] and to the proof of Gauss’s Lemma, where
the variation defined in the corresponding proof is a variation through geodesics.

Motivation 1.1 * We will attempt to derive an equation that must be satisfied by the
variation field of a variation through geodesics. Nevertheless, we shall see that the
resulting equation, given a geodesic -, characterizes a class of vector fields along v, the
so-called Jacobi fields, with which we shall be concerned to a large extent throughout
the chapters.

* Under the hypotheses of Definition 1.1, let V' (¢) = 9,I'(0, t) be the corresponding vari-
ation field of I". Since I'; is a geodesic for each s € J, it follows that D, T = 0. Using
this last relation, we aim to derive a relation involving V.

* If we knew that for every vector field 17 along I" it holds that
D;DW = DD, W,
then by a well-known lemma we would obtain
0= DsD, T = D,D,T = D;D,S,

and evaluating at (0, ¢) we would have D2V = 0. However, the truth is quite far from
this.

+ In the present case, the role of the Riemann curvature tensor is decisive, as it provides a
“measure” of how far the difference

D;D\W — D, D;W

is from being zero.
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Lemma 1.1 Let (M, g) be a Riemannian manifold and let I": J x I — M be a smooth
one-parameter family of curves. If V' is a € vector field along I, then

D,D,V — D,D,V =R(S,T)V,

where S(s,t) = 0,I'(s,t) and T'(s,t) = 0,I'(s, t).

Proof. 1t suffices to prove the desired identity in a local coordinate system. Let (U, (z°)) be a
coordinate chart on M. Then, in coordinates,

r=((T,...,r"),
and
or orJ
S(s,t) = R (s,t) ai|r(s,t)’ T(s,t) = W(s,t) 8j}F(s,t)’ V(s,t) = V¥(s,t) ak‘r(st
We have P
D,V =D, (V'9;) = E@- + V'D,(0;),
and therefore
oV A oV’ i
D,D,V = m&- + WDS(&) 9 Dy(0;) + V*'DysDy(0;). (1.1)
By symmetry we have
O*Vi oV’ oV’ ,
DD, —Dy(0; —D,(0; DD, (0;). 1.2
t V atasaz + 83 t(az) + 875 s(az) + V t 3(01) ( )

Subtracting (1.2) from (1.1), we obtain
D,D,V — D;D,V = V"[D,D(8;) — D;Ds(5;)] .

By extendability, we have

orJ
Vo.0;.

Dy(9;) = Vr0; = ot Vo

Since V,0; is also extendable, it follows that

%17 orJ ork
D,D,0; = mVa 0; + — 9 s Vak (Va 8)

By symmetry with respect to s, ¢ and the symmetry of the connection, we obtain

orJ ork

D,D;0; — D;D0;
s taz t 587, 825 a

[V@k (Va a) Vaj (vakal)] = R(S’ T)aza

where R denotes the Riemann curvature tensor, and the last equality follows from the € *°-
linearity of R. The desired result follows immediately from the above relation. [

Theorem 1.1 (Jacobi Equation). Let (M, g) be a Riemannian manifold, let v: I —
M be a geodesic, and let V€ Z (7). Suppose that V is the variation field of some
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variation of vy through geodesics. Then

D}V +R(V,%) (§) =0. (13)

Proof. LetI': J x I — M be a variation of v through geodesics such that
V(t) = 0,I(0,1).
Since ', is a geodesic for each s € J, we have D, T = 0, and hence
0= D,D,T = D,D,T = D;D;S +R(S,T)T,

where the second equality follows from the previous lemma and the third from the Symmetry
Lemma. Applying the last relation at (0, ¢), and noting that

T(0,t) = 4(t) and S(0,t) = d,0(0,¢) = V (1),

we obtain the desired relation. O]

Definition 1.2 Let (M, g) be a Riemannian manifold and let -y be a geodesic. A vector field
V € Z () will be called a Jacobi field if it satisfies equation 1.3.

Remark 1.1 » Let (M, g) be a Riemannian manifold, let v: [ — M be a geodesic of
M, and let J € 2 () be a Jacobi field. Let p = y(a) witha € 1.

* In the case of the equations for parallel vector fields along a curve and of the geodesic
equations, it was quite convenient to study these equations using a local coordinate sys-
tem. This was a decisive step in order to prove existence and uniqueness theorems.

* Due to the appearance of a second-order covariant derivative in the Jacobi equation, it
is more convenient, for a Jacobi field J € Z27(), to consider a parallel orthonormal
frame { F;} along . Then

J(t) = J' () Ei(t),

and equation 1.3 can be rewritten in the following form:

JHt) + Riggoy(t) J7(8)J*(t) J(t) = 0, (1.4)

where

 Using the above equation and given two initial conditions, we will show that, for a given

geodesic, there exists a unique Jacobi field satisfying these initial conditions.

Theorem 1.2 (Existence and Uniqueness of Jacobi Fields). Let (M, g) be a Riemannian
manifold, let vy: I — M be a geodesic of M, and let a € I. If v,w € T,M, where
p = ~y(a), then there exists a unique Jacobi field J: I — T'M such that

J(a)=v and D;J(a) = w.



8 Chapter 1. The Jacobi Equation

Proof. Let {E;}; be a parallel orthonormal frame along «. Then, by the previous remark, we
are reduced to solving the second-order system of differential equations

JH(t) + Rl oy(t) J(8)J*(t) J (t) = 0.

Setting W' = J !, we obtain a linear first-order system of differential equations, this time with
2n unknowns:

Wi=Ji,
W= — (R 0r) J I

If v = v'E;(a) and w = w'E;(a), then the initial conditions of the above initial value problem
are

(JHa),...,J"(a), W (a),....,W™(a)) = (v1, ..., Un, w1,..., Wy).

By a well-known theorem, the above system admits a unique solution. Moreover, due to the
above initial conditions, the field .J = J*E; satisfies the Jacobi equation and

J(a) = J'(a)E;(a) = v'E;j(a) =v, and D;J(a) = ji(a)Ei(a) = w.

[]

Remark 1.2 * Let (M, g) be a Riemannian manifold, let v: I — M be a geodesic of
M,andleta € I. If p = 7(a), then by the previous theorem we have shown that there
exists a bijective mapping

o: J(v) = T,MaeT,M, &(J)=(J(a),Di(a)),
where _# () denotes the set of Jacobi fields along ~.

* Moreover, it is easy to verify, due to equation 1.3, that _# (v) is a vector subspace of

2 (7)-

* Owing to the linearity of the Jacobi equation, it follows that ® is a linear map and hence
a linear isomorphism.

Corollary 1.1 Let (M, g) be of dimension n and let y: I — M be a geodesic of M. Then
7 () is a vector subspace of 2"(y) of dimension 2n.

Motivation 1.2 * By Theorem 1.1 we showed that, for a given geodesic and a variation
of it through geodesics, the corresponding variation field is a Jacobi field.

* Could we claim that the converse also holds? That is, is every Jacobi field the vari-
ation field of some variation through geodesics? The following proposition gives an
affirmative answer to this question, under certain assumptions.

Proposition 1.1. Let (M, g) be a Riemannian manifold and let ~v: I — M be a
geodesic. If M is complete or I is a compact interval, then every Jacobi field along
v is the variation field of some variation of ~y through geodesics.
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Proof. » Without loss of generality, we may assume that 0 € [ (by applying an appropriate
translation in the parameter t). We then denote (0) = p and 4(0) = v, that is,

(1) = exp, (1),
* Let J € # () and consider a curve o: (—¢,e) — M such that 0(0) = p and ¢(0) =

J(0). In addition, choose a vector field V(s) € £ (o) with V(0) = v and D,V (0) =
D, J(0).

.

* We define I'(s,?) = exp,,(tV(s)). Using the fact that either M is complete, by the
Hopf-Rinow theorem, or that / is a compact interval, we may conclude that

T:(=6,8)x 1 — M

is a variation of ~. It is left as an exercise to the reader to show that I' is a variation of
~ through geodesics.

« We consider the variation field W (¢) of I'. We observe that
W(0) =¢(0) = J(0), D\W = D;S(0,0) = D,7(0,0) = D,V (0) = D;J(0).

By Theorem 1.1, the field W is a Jacobi field, and from the above relations together
with the uniqueness of Jacobi fields, it follows that W = J.
]

Motivation 1.3 Let (M, g) be a Riemannian manifold and let v: I — M be a € curve.
Due to the natural behavior of the Levi—Civita connection under local isometries, we have
already seen the following result: if

F: (M,g) — (M,9)

is a local isometry and 7 = F' o 7, and if 7y is a geodesic of M, then 7 is a geodesic. Can the
previous result yield an analogous statement for two vector fields J € 2 (y) and J € 2 (¥)
when these are F'—related?
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Proposition 1.2. Let F': (M, g) — (M , g) be a local isometry between two Rieman-

nian manifolds and let vv: I — M be a geodesic (hence y = F' o v is also a geodesic).
If two vector fields J € Z (v) and J € X (7) are F-related, that is,

dyy F'(J(t)) = J(t),

then J € 7 (v)ifandonlyif J € Z (7).

Proof. The result follows locally by using the naturality of the covariant derivative and the
naturality of the Riemann curvature operator. ]

1.2 Tangential and Normal Jacobi Fields

Motivation 1.4 * It is natural, when one begins studying Jacobi fields, to look for trivial
examples and to examine what information one can extract from them.

« If (M, g) is a Riemannian manifold and v: I — M is a geodesic, then by the ¢">°-
linearity as well as the symmetries of the curvature tensor it follows that

Jo(t) =74(t) and  Ji(t) = t(t)
are Jacobi fields along 7.

* If we assume that M is complete or that / is compact, and we consider the correspond-
ing variations from the proof of Proposition 1.1 whose variation fields are .Jy, .J; respec-
tively, we observe that

Co(s,t) =~(s+t) and T'i(s,t) =~((1+ s)t).

We therefore observe that the information we obtain from the above relations is negli-
gible with respect to the behavior of geodesics other than ~.

» If we consider an arbitrary regular curve 7: I — M in a Riemannian manifold (M, g),
then it is an immersion and for each ¢ € I we have

TioyM = (%) < TymM,

which is a 1-dimensional subspace; hence we may consider 7

5 M to be the correspond-

ing (n — 1)-dimensional subspace orthogonal to TVT(t)M )

* A vector field V' € 27 (v) will be called tangential if V' (t) € T, M forevery t € I. A
vector field V' € 27 () will be called normal if V' (¢) € Tj(t)M for every t € I. The
spaces of tangential and normal vector fields along v will be denoted by 2" " () and
2+ (), respectively.

Definition 1.3 Let (), g) be a Riemannian manifold and let v: I — M be a geodesic. A
vector field V' € 27(v) will be called a tangential Jacobi field if it is a Jacobi field and
V(t) € TJt M for every t € I. The normal Jacobi fields are defined analogously. The spaces
of tangential and normal Jacobi fields along v will be denoted by _# " (v) and _# * (), respec-
tively.
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Proposition 1.3. Let (M, g) be a Riemannian manifold, let v: I — M be a geodesic,
andlet J € Z (7). The following statements are equivalent.

(a) J is a normal Jacobi field along .
(b) J is orthogonal to * at two distinct points.
(c) J and D,J are orthogonal to * at one point.

(d) J and D;J are orthogonal to 7 at every point.

Proof. Let f: I — R be defined by

Since the Levi—Civita connection is metric, we have

[= <DtJ; 7> + <J7 Dt7> = <DtJ7 ;Y>7

and similarly

F=(D{J.4) == RN, 4) = —RalJ,4.9.9) = 0,

where the last equality follows from the symmetries of the Riemann curvature tensor. Conse-
quently, f is constant, from which the equivalences (a)—(d) follow immediately. [

Corollary 1.2 Let (M, g) be a Riemannian manifold and let v: /[ — M be a nonconstant
(that is, regular) geodesic. Then #*(v) is a (2n — 2)-dimensional subspace of _# (v) and
_Z T(v) is a 2-dimensional subspace of _# (7). Consequently,

S =0 e 7.

Proof. * We consider the map
®: J(v) = T,MaeT,M, @(J)=(J(a),DiJ(a)),

which we have shown to be a linear isomorphism. From the previous proposition it is
clear that

(7)) =T,M" & T,M",
where the latter space has dimension 2n — 2.

* It is immediate that
S ()0 g+(y) = {0}.

Moreover, since the Jacobi fields Jy, J; defined in Motivation 1.4 belong to _# ' () and
are linearly independent, it follows that

dim ¢ " (y) = 2.
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Special Types of Jacobi Fields

2.1 Jacobi Fields Vanishing at a Point

Lemma 2.1 Let (M, g) be a Riemannian manifold, let / C R be an interval containing 0, let
v: I — M be a geodesic, and let J € _# () such that J(0) = 0. Assume that M is complete
or that [ is compact. Then J is the variation field of the variation of ~y

[(s,1) = exp, (H(v + sw))
where 7(0) = p, 4(0) = v, and D, J(0) = w.

Proof. Following the steps of the proof of Proposition 1.1, we choose 0 = p and W(s) =
v + sw. Then the desired variation is

['(s,t) = exp,(5) (tW(s)) = exp,(t(v + sw)).

Proposition 2.1. Let (M, g) be a Riemannian manifold, let I C R be an interval con-
taining 0, and let v: I — M be a geodesic with v(0) = p and ¥(0) = v. For every
w € T,M, the Jacobi field J € 7 (v) satisfying

J0)=0 and D;J(0)=w
is given by the formula

J(t) - dtv(expp)(tw)a (21)
under the identification T;,(T,M) = T,M.

Proof. Since each t € I belongs to some compact interval 0 € [, C I, it follows that for
every such compact interval [, the Jacobi field J is, by Lemma 2.1, the variation field of the
variation

D(s.) = exp, (t(u + sw)).

We compute as follows:
J(t) = 0,I'(0,t) = doy (expp(t(v + sw))) (0s)
= dw(expp) o do)(t(v + sw))(0s) = dw(expp)(tw).
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Remark 2.1 Under the hypotheses of the previous proposition, assume that (U, (z%)) is a
normal neighborhood with normal coordinates around p such that (/) C U, with

v = viai‘p and w = wiai‘p.
Then the corresponding representation of I is
[(s,t) = (t (v' +sw'),....t (" + sw™)),
and since J is the variation field of I, it can be written in normal coordinates in the form

J(t) = twi@-!y(t). (2.2)

~

J

Remark 2.2 Let (M, g) be a Riemannian manifold, let p € M, and let U be a normal neigh-
borhood of p. Let ¢ € U \ {p}. Consider the radial geodesic

7(t) = exp,(tv),

where v = exp, '(q). Then v(1) = q. Let w € T, M, which in normal coordinates can be
written as

w = wi(?i}v(t).

Setting v' = wi@-} » and applying the previous remark, we obtain that the Jacobi field J €
7 () vanishing at 0 satisfies

J(1) = wiai‘w(l) = wiai‘q = w.

Corollary 2.1 Let (M, g) be a Riemannian manifold, let p € M, and let U be a normal
neighborhood of p. Let ¢ € U \ {p}. Consider the radial geodesic

7(t) = exp,(tv),

where v = exp,'(¢). Then y(1) = ¢. For every w € T, M, there exists a Jacobi field
J € _7(v) that vanishes at ¢ = 0 and satisfies J(1) = w.
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2.2 Jacobi Fields in Spaces of Constant Curvature

Motivation 2.1 On a Riemannian manifold (17, g), for any linearly independent v, w € T, M
and II the plane spanned by v, w, we can define the sectional curvature of II by

Rm, (v, w, w, v)
K1) = lu A w|?

Y

where
1/2

lu Aw| = ({v,0) - (w, w) = (v, w))
Spaces of constant sectional curvature are quite interesting, although this may not be apparent
at first glance, and their properties come into direct contact with Jacobi fields. To give the
reader a first taste, we recall that every connected Riemannian manifold admits a universal
covering (see [3]), whose nature as a manifold is generally unknown. In the special case when
M has constant sectional curvature —1, 0, 1, there are not many possibilities for this covering.
It must be one of the following:

H", R", S"

Lemma 2.2 Let (M, g) be a Riemannian manifold of constant sectional curvature c. Then
for all v, w, x € T,M we have

Rm(v, w)(x) = ¢ ((w, z)v + (v, x)w) ,

where Rm denotes the map Rm: T,M x T,M x T,M — T,M induced by the Riemann
curvature tensor.

Definition 2.1 Let c € R. We denote by s.: R — R the function

t, c=0,
sc(t) =< Rsin(t/R), c¢=1/R*>0,
Rsinh(t/R), c¢=—1/R?<0.

Proposition 2.2. Let (M, g) be a Riemannian manifold of constant sectional curvature
cand let y: I — M be a unit-speed geodesic of M. If J € _# (v)* with J(0) = 0,
then J is of the form

J(t) = ks(t)E(t),

where s, is the function defined above and E(t) is a parallel, normal, unit vector field
along .

Proof. » Let F/(t) be a parallel, normal, unit vector field along v and let J € _# (7)* with
J(0) = 0, written in the form

Then we have
D2J + R(J,%) (%) =i+ cu =0,

where the equality follows immediately from the previous lemma, from the fact that .J
is normal, and from the assumption that + has unit speed.
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* The last equation is an ordinary second-order differential equation with constant coef-
ficients, and the solutions satisfying the condition u(0) = 0 are precisely the constant
multiples £s..

* By a dimension-counting argument, it follows that the normal Jacobi fields vanishing at
t = 0 are exactly those of the form

J(t) = ks.(H)E(t).

]

Remark 2.3 Consider the map 7: R"™ \ {0} — S" defined by 7(z) = z/||z|. If ¢° €
7 ©2)( M) denotes the Riemannian metric induced on the sphere from the standard Euclidean
metric on R”, then we consider the pullback tensor

g _ 7r*g° c 90,2 (RnJrl \ {O}) ]

How can we relate the standard Euclidean metric to the tensor g above?

Lemma 2.3 On R" \ {0}, the standard Euclidean metric g can be written as
g =dr®dr+r%g,

where 7 is the standard Euclidean distance function r(x) = ||z|].

Proof. Consider the map ®: R, x S"~1 — R"\ {0} defined by ®(p, z) = px. Equipping
R, x S"~! with the warped product metric dp ® dp + p*g°, we obtain

g= (CD_l) (dp @ dp + p*g°) = dr @ dr + 123.

The following theorem, which we state, can be found in [4].

Theorem 2.1. Let (M, g) be a Riemannian manifold of constant sectional curvature c.
Letp € M and let (U, (x%)) be normal coordinates around p. If r denotes the radial
distance defined on U \ {p} and g € T%*(U \ {p}) is defined in x—coordinates as
before, then

g =dr ®dr+ s.(r)%g.

Proof. * For practical reasons, we denote by g the Euclidean inner product (in normal
coordinates) and by g. the right-hand side of the above equality. Let g € U \ {p}. If
b = r(q), then by Gauss’ Lemma, every v € T, M admits an (orthogonal) decomposition
of the form
v=Vt4+VT,

where V* is a multiple of 9,|, and VT is tangent to the geodesic sphere of radius b.

» We wish to show that g(v, v) = g.(v,v) (and then apply this to v+ w). By the properties
of normal coordinates, 0, is unit with respect to g, g, and g.. Therefore, it suffices to
prove the equality assuming that v is tangent to the geodesic sphere of radius b.
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» For such vectors v, since » = b, it suffices to show that

g(v,v) = s:(0)*(b).

From Lemma 2.3 we have

* By Lemma 2.2, we may assume that for the radial geodesic v: [0,b] — M (in normal

coordinates)
t t
ty=1+q¢",...,-¢"
(1) (bq, ,bq),

there exists a Jacobi field J € _# () such that J(b) = v, given by

J(t) = gvm

V()"

« Since J(0) = 0 and J(b) = v, and v is orthogonal to 7, it follows that J € _#*(v),
hence it is of the form
J(t) = ks.(t)E(t).

 Using the last relation, we obtain the desired equality.
O

Corollary 2.2 Let (M, g) and (M, §) be Riemannian manifolds of the same dimension and
constant sectional curvature c¢. Then (M, g) and (M, §) are locally isometric.






CHAPTER 3

Conjugate Points

3.1 Examples of Conjugate Points

In this chapter we begin to address the question of when, and under what conditions, the
exponential map becomes a diffeomorphism, and in particular we will focus on its critical
points. After developing the appropriate tools, we will return to this topic again in Chapter 5.
We already know that the exponential map exp,, on the open set

&, ={veT,M|3y:12][0,1] - M amaximal geodesic with v(0) = p, ¥(0) = v}

1s a smooth map between n-dimensional spaces, and therefore it admits a local inverse at points
where d, (expp) has rank n (by the inverse function theorem or the rank theorem).

D
ez

We will call the points of the exponential map at which the inverse function theorem and the
rank theorem apply regular points. We already know that 0 is a regular point, since

do(exp,) = id.

To gain some intuition about the nature of the critical points of the exponential map, we
consider the example of the sphere S%. There, the exponential map exp,, 1s a diffeomorphism
when restricted to the ball B,(0) C 7,S?. However, every point on the boundary 9B, (0) is a
critical point, which suggests that the exponential map cannot be extended as a diffeomorphism
to the antipodal points.

What we aim to show is that Jacobi fields provide a powerful tool for studying these critical
points.



20 Chapter 3. Conjugate Points

Motivation 3.1 We have already seen, from Proposition 2.2, that every Jacobi field on the
sphere S? which vanishes at p has its first zero at distance exactly 7 from p, namely at the
antipodal point. On the other hand, if U is a normal neighborhood of p, then Proposition 2.1,
in normal coordinates, yields the relation

J(t) = tw' |,y (w #0),

and consequently the Jacobi field does not vanish at any other point within the normal neigh-
borhood.

Definition 3.1 (Conjugate points). Let ()], g) be a Riemannian manifold and lety : [a, b] —
M be a geodesic with v(a) = p and v(b) = ¢q. We say that p and ¢ are conjugate along ~y if
there exists a Jacobi field

J e Z(1)\{0}

such that J(a) = J(b) = 0. The multiplicity (or order) of the conjugacy is the dimension of
the space of such Jacobi fields.

The study of conjugate points is far from trivial. The example of the sphere given above may
be misleading in this respect. On ellipsoids £ the situation is more complicated but more
typical, and the set of first conjugate points from a given point p is a closed curve (depicted in
the figure below). More details concerning conjugate points can be found in [1].

3.2 Basic Results on Conjugate Points

Remark 3.1 * By the existence and uniqueness theorem for Jacobi fields, the space of
Jacobi fields vanishing at a has dimension n. Since tangential Jacobi fields can vanish
at at most one point, the multiplicity of conjugacy must be at most n — 1.

* In fact, the inequality is sharp: by Proposition 2.2, on the spheres S™, for every geodesic
joining antipodal points and for every parallel vector field that is normal along ~, there
exists a Jacobi field that vanishes at the endpoints. However, the space of parallel normal
vector fields has dimension n — 1.

The following proposition will justify our previous intuition by showing that conjugate points
are very closely related to the critical points of the exponential map.

Proposition 3.1 (Critical points of the exponential map). Let (M, g) be a Riemannian
manifold, let p € M, and let v € T,M. Let~y : [0,1] — M be the segment of the
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maximal geodesic determined by v (starting at p) such that (t) = exp,(tv), and let
q = exp, v. Then v is a critical point of exp,, if and only if p and q are conjugate along
7.

Proof. (=) If v is a critical point, then there exists a nonzero w € T,,7,M ~ T, M such that
d,(exp,)(w) = 0. Consider the variation

[(s,t) = exp, (t(v 4 sw))

(from Lemma 2.1), as well as the Jacobi field J = 0,—¢I', which is the variation field of I".
Computing J(1) we obtain

J(1) = 0s=0I'(s,1) = 32

S

exp, (v + sw) = d,(exp,)(w) = 0,

s=0
which shows that the Jacobi field J vanishes at the endpoints.

(<) Conversely, if p and ¢ are conjugate, there exists a Jacobi field J € _#(v) \ {0} that
vanishes at the endpoints, i.e. J(0) = J(1) = 0. By Lemma 2.1, .J is the variation field of

[(s,t) = exp, (t(v + sw)),
where D;J(0) = w. But since J(1) = d,(exp,)(w) (as above), we obtain

dy(exp,)(w) = 0.







CHAPTER 4

The Second Variation of Length

4.1 A Few Words on Variational Problems

Before referring to the second variation of the length functional, it is useful to mention the
more general framework, namely the calculus of variations. Many mathematical problems,
and especially those arising from physics or differential equations, are treated using techniques
involving nonlinear functionals.'

Example 4.1 We have already encountered the problem of minimizing length through the
study of geodesics, which is in essence a variational problem. Given any suitable variation
I': J x I — M, we know that on a sufficiently small neighborhood the length functional L
is minimized, for fixed endpoints. That is, the functional

b
L) = [l d
is minimized in the class
A ={v:[a,b] - M |~ acurve in M with endpoints y(a) = p, v(b) = ¢}

provided the endpoints p, ¢ are sufficiently close. Other favorite problems among mathemati-
cians working in the calculus of variations are the so-called isoperimetric problems. An
example of an isoperimetric problem is the following: given a positive number y, can one
find a simple closed curve of length 1 that maximizes the area enclosed by it? That is, the
question is whether the area functional

A(’}/) = / o) A/ det(gi,j)m dx N\ dy
mt(y

attains a maximum in the class
A = {v |~ simple closed curve with L () = p}.

Finally, there is also the (nonparametric) Plateau problem (and its more general version due
to Douglas), in which one asks whether, given a map v : 02 — R”, with {2 C R™, there exists
an n-dimensional graph whose boundary contains v and which minimizes volume (or at least
is a critical point). That is, we seek graphs f : 2 — R" in R™"™ that minimize the Hausdorff
measure

A(Gr(f)) :/Q\/lJrZIMVfP dx

The term “nonlinear functional” coincides here with “not necessarily linear”.
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within a suitable class A. By MV f we denote the n x n minors of V f, and the sum is taken
over all such minors. A problem related to minimal surfaces is the formation of alloys and the
study of the Allen—Cahn equation e?Au — W (u) = 0, whose solutions are the critical points

of the energy functional
2
E(u) :/ €|Vu] + W) dx.
Mo 2 €

This equation describes the formation of alloys and their interfaces. As € becomes small,
solutions of the equation approach a minimal surface.

Perhaps the above examples give an idea of how fundamental the problems addressed by the
calculus of variations are. What interests us as a first step is to describe some basic tools of
the subject, which we will later compare with our results in differential geometry. We note for
what follows that all our functions belong to a normed space.

Definition 4.1 (Derivatives / First and second variations of functionals). Let J : A — R
be a functional. The derivative or first variation of .J at f, in the direction A, is defined by

d

J(f +¢h).

e=0

Correspondingly, the second derivative or second variation is defined by

() = L

7 J(f +eh).

e=0

The directions h are often also referred to as variations.
Remark 4.1 LetJ: A — R be a functional. If .J has a local extremum at f, then
dJ(fo,h) =0, for every admissible variation A,
that is, for every h such that fy + h € A. Moreover, if there is a local minimum, then
6*J(fo,h) =0,
and if there is a local maximum, then

62J(fo,h) <0.

Proof. Indeed, the function of ¢, J(fo + Oh) : R — R, must have a local extremum at ¢ = 0,
and therefore

d
0J(fo,h) =—| J h) = 0.
(fo,h) = | _ J(fo+eh)
The statements concerning the second variation follow again from the one-dimensional case.

]

If one wishes to study problems on spaces that are Riemannian manifolds, there may not be
such a direct description of a variation as in the case of functions /. In the example with curves,
what would the expression v 4 ch even mean? This is why we define variations carefully. We
recall that an (admissible) variation of a curve 7 : [a,b] — M is a continuous one-parameter
family

[':(—e,e) % [a,b] = M, ['(s,t) =Ts(),

with the following properties:
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* There exists a partition {ay < a1 < --- < ay} of [a,b] such that on each rectangle
(—e,€) X [aj, a;+1] the map I is smooth.

* Each I : [a,b] — M is piecewise regular and €">°.
« We have I'y(t) = ~(t) forall ¢t € [a, b].

For variations we also define variation vector fields, i.e. vector fields V' : (—¢,¢) X [a,b] —
TM with V(s,t) € TpeM. We are especially interested in the variation field along +,
namely

V(t) = Os=0l'(s,1).

In the above figure: A variation and a normal variation are depicted.

With the above definition in place, if we are interested in curves, it is natural to define the first
and second variation of a functional as follows:

Definition 4.2 (First and second variation — geometric version). Let (1, g) be a Rieman-
nian manifold, lety : I — M be acurve, and letI" : (—e,e) x I — M be a variation of y. Let
also J : A — R be a functional (on some class .A). We define the first variation (understood
at ) in the direction of I" by

510, T) = 8J(1) = | _a(r),
and likewise the second variation by
§2J(v,T) = 6%J(I) = & (Ts).
’ ds?ls=0" " °




26 Chapter 4. The Second Variation of Length

Remark 4.2 Let (M, g) be a Riemannian manifold and let v : [a,b] — M be a curve. Let
also J : A — R be a functional (on some class A). If .J has a local extremum at -, then

0J(I')=0
for every variation I of 7. Moreover, if 7y is a minimizer, then
§2J(T) =0,

whereas if it is a maximizer, then
§2J(I) <0.

Proof. Indeed, the function of s, J(I';) : R — R, must have a local extremum at s = 0, and

therefore
d

ds s=0

The statements about the second variation again follow from the one-dimensional case. [

5.J(T) J(T,) = 0.

The above idea is simple, but very important and, if one thinks about it, quite deep. Instead of
studying a problem in an awkward space (a space of functions), one studies many (in general
infinitely many) easy problems on R.

Motivation 4.1 What we aim for, and what is suggested by Remarks 4.1 and 4.2, is the
connection between first and second variations and minimization/maximization of functionals;
in particular, we are interested in results related to minimizing length. It is already known,
in the case where 7 is a geodesic, that locally we have dL,(I') = 0 and conversely (so the
condition §L,(I') = 0 for every variation is necessary and sufficient for the existence of a
local minimum). This result is described by saying that “geodesics locally minimize length”.
Later we will find a condition for a geodesic v which guarantees §°L,(I') < 0 when the
interval of computation becomes very large. Consequently, this shows that geodesics on large
intervals do not necessarily minimize length.

Of course, variations have other applications beyond these basic results, such as the Morse,
Bonnet—Myers, and Synge—Weinstein theorems.

4.2 The Second Variation Formula

Theorem 4.1 (The second variation formula). Let (M, g) be a Riemannian manifold.
Let v : [a,b] — M be a unit-speed geodesic, and let " : (—¢,¢) X [a,b] — M be a
normal variation (i.e. I's(a) = v(a) and I's(b) = ~v(b)). Let V be the corresponding
variation field. Then

d2

d82 s=0

b
5L,() LT = [ IDWHE = Rm(V*, 5,5, V) .

where V* is the normal component of V.
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Proof. In the proof we denote 7" = 0,I" and S = 0,I', and we also take a partition {ag < a1 <
-+« < a} as in the definition of variations. Differentiating once we have

d o [% aj 9
—Ly(Tylia ) = =— TTl/th:/ — (T, T)"? at
LUl a) = 5 [ TT) " ey

aj—1 j—

where we interchange differentiation and integration since sufficient smoothness has been as-
sumed. Differentiating the inner product gives

a9 a1
/ —(T,T)*dt = / (T, T)"'?2(D,T, T) dt,
a;_, 08 a;_1 2
and by the Symmetry Lemma,

w1 172 “ (DS, T)
/C; §<T, T> / 2<DST, T> dt - / W dt

j—1 aj—1

We can differentiate the last identity once more to obtain the second variation:

& % 9 (DS, T)
— L (Ts|ia 1) = —_— 1
ds? o(Fslias-1.09) /aj1 Os dt

<T, T>1/2
B /aj (DsDyS,T) (DS, DT _ (DS, TY(DT, T) @t
" o, (LT T (T, T (T, T3/? '

(again interchanging differentiation and integration). In the first term we use the relation
DsDS — D;D;S = R(9,I',0,I").S, and in the other two terms we use the Symmetry Lemma.
Then

— dt.

L]= / (DiDsS +R(S,T)S,T>+<DtS,DtS) (D;S,T)?
e (T, T) (T, T)'2 (T, T)3"

j—

Henceif s =0, (T,7) =1,

d2
— L,(Tslig: - a1) =
5y BTl 1)

/ J (D;D,S, T) —Rm(S,T,T,S) + |D:S|> — (DS, T)? dt
aj—1 s=0

But at s = 0 we have D;T" = D, = 0 since +y is a geodesic, which allows us to write the sum
of the first terms as follows:

5|

J=0

aj d
[ wsna

(D5, T ]

0

/ (DD, T) dt

j—

s=0 s=0

Il
<.
> | Mw
o

s=0

.
|

=0,

where the last equality follows from the fact that D,_yS = D,_q0,I' = 0atay = aanda, = b
(since there is no variation at the endpoints, by normality of I'). Thus the first term vanishes
and we obtain the simpler relation:

a;

d? k aj ) )
E?gfﬂwng/q4m@ﬂﬂ$+W£W%Q&ﬂdt

s=0

b
:/—Rmummvwwaw%w@uwwt
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These are essentially the main computations. It remains to write V' = V+ + VT, where
VT = (V,4)5. Then

(DV)T = (DV, %)y = Di(V,4) 4 = DV, since Dy =0
(and similarly (D,V)* = D;V1), hence
DV > = [(DV) P+ [(DV)F)? = (DV,4)* + DV

The first term cancels the corresponding term in the second variation formula we already
found, and the second term is one of the desired ones. Finally, regarding the term Rm(V, %, 4, V),
by the symmetry

M(’}/, ;Ya <>7 <>) = Rm(<>, <>a 77 7) = 07

by the first Bianchi identity, and from the fact that V' is parallel, it follows after some com-
putations that

Rm(V,4,%, V) = Rm(V+, 4,4, V)

(try to prove this). Combining everything above, we obtain the second variation formula
62Ly(T):

d2
- @ s=0

b
§2L,(T) Lg(rs)z/ |IDVAE —Rm(VE 4,4, V5 dt.

]

It is clear from the second variation formula that what plays an essential role is the normal
component of the variation field. This should be intuitively evident, since a tangential variation
contributes only to reparametrizations of v. From now on, there is no need to deal with general
variation fields, but rather with normal variation fields. We restrict our study to normal
variation fields, that is, to fields V' along v for which V = V'*.

Theorem 4.1 naturally leads to the definition of the index form of .

Definition 4.3 (The index form). Let (1/, g) be a Riemannian manifold and let v : [a, b] —
M be a unit-speed geodesic. For V, W € Z7() we define the index form of y by

b
IV, W) = / (D, D) — Rm(V, 4,5, W) dt.

Theorem 4.1, together with the properties of the second variation in Remark 4.2, yields the
following remark.

Remark 4.3 Let (M, g) be a Riemannian manifold and let 7 : [a,b] — M be a unit-speed
geodesic. If I' is a normal variation and V' is the corresponding variation field, then the mini-
mizing property of v implies

I(V,V)>0.

This is the analogue of the general result for functionals: if J : A — R is minimized, then
62J(T) = 0.

The formula for I on Jacobi fields can take a specific simplified form, essentially given by the
following proposition.
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Proposition 4.1. Let (M, g) be a Riemannian manifold and let v : [a,b] — M be a
geodesic. For every piecewise smooth vector fields V, W along -,

IV, W) = - /b<Dt2V +R(V,4)%, W) dt + [(D:V, W)], = i@thV, W(a;))-

j=1

Here {ay < a; < --- < ay} denotes a partition such that V,W are smooth on each
subinterval, and A; is the jump operator D,_ +V — D,__ - V.
J J

Proof. We work on the subintervals [a;_1, a;]. Differentiating (D,V, W) gives

d
DV = (D}V,W) + (D,V, D,W),

hence integrating the last term yields

a;
aj—1°

/J (D,V, D,W) dt = —/J (D2V, W) dt + [(D,V,W)]

Jj— Jj—

Summing these identities and subtracting the term fj Rm(V, 4,4, V) dt gives the desired for-
mula. n

A consequence of the previous proposition is the following remark.

Remark 4.4 Let (M, g) be a Riemannian manifold. If v is a geodesic and V' is a normal,
piecewise smooth vector field along -, then I(V, W) = 0 for all normal, piecewise smooth
vector fields 1 along v if and only if V' is a Jacobi field.

Proof. One direction is immediate, namely under the assumption that V' is a Jacobi field. Ja-
cobi fields are solutions of a linear differential equation, so the existence theorem for solutions
implies (among other things) smoothness. For the other direction, the proof has significant
similarities with the argument showing that minimal surfaces satisfy a geodesic-type equa-
tion, so we will be brief.

On any interval of the form [a;_;, a;], choose a bump function ¢(t), and also consider the
normal field

W = o(t) (DIV +R(V.4)4).

Since ¢ is a bump function, Proposition 4.1 implies

0= I(V.W) = —/ o(8) | D2V + RV, )4 dt.

Moreover, this holds for every ¢ € €>°(|a;-1, a;]), which shows that
D}V +R(V,%)% =0 on[a;_1,a;],

i.e. V 1s Jacobi on each subinterval. It remains to show that there are no “corners” at the
junction points a;. Choose a field W such that

W(a;)=D,_+V —D,_,-V, je{l,....k—1}, W{(a) =W (b) = 0.
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Then again by Proposition 4.1, together with the fact that ' is Jacobi on each piece,
k-1
0=I(V,W)==> |A;D,V],
j=1

that is, A; D,V = 0 for every j. This ensures there are no corners, and hence the desired
conclusion (recall also the uniqueness of Jacobi fields). ]

4.3 The second variation of energy

Another formulation of the previous results, which is more convenient in certain places, is the
one involving energy. In [1], for example, the variation results are presented entirely in terms
of energy.

Definition 4.4 (Kinetic energy). Let (M, g) be a Riemannian manifold, v : [a,b] — M a
curve, and I' : (—¢,¢) X [a,b] — M a variation of v. We define the Kinetic energy of the
s—variation of y by

b
E(s) = / 10,0 (s,1)| dt.

It is not difficult to show that, if v is a geodesic, then for every normal variation [' we have
E(y) < E(s). Following also the proof of the first variation of length, one can show that
there is an analogous formula for the first variation of the energy. However, here we will be
concerned only with the second variation of energy.

Combining the proofs of Theorem 4.1 and Proposition 4.1, we obtain the following theorem:

Theorem 4.2 (The second variation of energy). Let (M, g) be a Riemannian manifold,
v : [a,b] = M a geodesic, and T : (—¢,¢) X [a,b] — M a normal variation. Then

k—1

350 =~ [ DV + ROARV) 0 = 30800V (@)

j=1

Here V denotes the variation field of T, and {ay < a1 < - -+ < ax} is a partition such
that V' is smooth on each subinterval.

4.4 Failure of minimizing beyond conju-
gate points
We know that, locally, geodesics are length-minimizing curves. Globally, however, as is seen

from the example of the sphere or the cylinder, geodesics do not minimize length on arbitrarily
large domains.
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(5
—

Motivation 4.2 We are interested in investigating how large this domain must be for the
geodesic to cease being minimizing. Taking into account that 6*L,(I") > 0 when L, is min-
imized, we might want to find conditions under which §?L,(T") < 0. Also, since the critical
points of d,(exp,) are related to conjugate points of p, we expect conjugacy to play a role as
well.

Definition 4.5 (Conjugate points along curves). Let (M, g) be a Riemannian manifold and
let v : [a,c] — M be a geodesic. We say that v has a conjugate point if there exists b € (a, |
such that y(a) and ~y(b) are conjugate. The conjugate point is called interior if b € (a, ¢).

The geometric picture one has is the following: suppose that on the sphere S? we take geodesics
that pass beyond antipodal points (say p = 7y(a) and g is the antipodal point). Then between
p and q there is (for instance by Proposition 1.1) an entire variation through geodesics of
(here, the semicircles between the antipodal points). Choose one semicircle C' (different from
the segment of ), and observe that the curve C' together with the final segment of 7 is a
piecewise geodesic curve of the same length as . At the point ¢ there is a corner, so by the
usual smoothing arguments for corners of geodesics we can produce a new curve of shorter
length connecting the endpoints of .

The following theorem essentially provides a condition under which geodesics do not mini-
mize length.

Theorem 4.3. Let (M, g) be a Riemannian manifold and let p, q € M. If is a geodesic
between p and q with an interior conjugate point, then there exists a normal field V €
Z () with I(V, V') < 0. In other words, 6L, < 0 (for a suitable variation).

Proof. Consider a geodesic v : [a, c] — M with y(a) = p, y(c) = ¢, and an interior conjugate
point y(b) with b € (a,c). Since y(a) and v(b) are conjugate, there exists a Jacobi field
vanishing at a and b, say .J. Define
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and note that Y is a normal and piecewise smooth vector field along . At ¢ = b there may be
a “corner”, and for this reason we also define a smooth vector field I along v such that

W(b) = A—pD;Y and W has compact support.

In fact there is always a jump in the derivative, because if 0 = A, D,Y = —D;_;J, then by
uniqueness J would be identically zero. Also, for small £ > 0 define V. = Y + W, and we
have

IV, V) = 1Y +eW,)Y +eW) = I(Y,Y) + 2e1(Y, W) + 21 (W, W).

The field Y satisfies the Jacobi equation on [a, b] and on [b, ¢|, with Y (b) = 0, and hence by
Proposition 4.1,
I(Y,Y) = —(AyD,Y, Y (b)) = 0.

Similarly,
I(Y, W) = —(A= DY, W (b)) = =[W (B[
Therefore,
I(Vo, Vo) = =2e|W(b)]” + 2 I(W, W) = O(—¢),
so for ¢ = ¢ sufficiently small we get I(V,,V;,) < 0. Choose V = V,,. O

We can also prove a result that looks like a kind of converse to the previous one. Namely, we
can show that if there are no conjugate points, then the curve ~y is minimizing among nearby
normal variations.

Lemma 4.1 Let ()M, g) be a Riemannian manifold and let v : [a,b] — M be a geodesic. If
J1,Jo € _Z(7), then the quantity

f@) = (DiJv, J2)(t) — (J1, Dy J2)(t)
1S constant.

Proof. 1t is a matter of computations, differentiating f. ]

Theorem 4.4. Let (M, g) be a Riemannian manifold and let v : [a,b] — M be a
geodesic with no interior conjugate points. If' V' is any normal, piecewise smooth vector
field along ~y, then 1(V, V) > 0. Equality holds if and only if V is a Jacobi field. In
particular, if v(b) is not conjugate to y(a), then I(V,V) > 0.

Proof. The proof is lengthy, so we present it briefly in steps.

» We may assume without loss of generality thata = 0. Setp = v(0) and let {w1, ..., w,}
be an orthonormal basis of 7, M/ with w; = §(0). Foreachi > 2, let J; denote the Jacobi
field with Jz(()) =0 and Dt:OJi = W;.

* Since v has no conjugate points, no nontrivial linear combination of the .J; vanishes.
Hence (for instance by a dimension argument) the fields J; span, for each ¢, the space
Tj(t)Tw(t)M . Therefore, for V' as in the statement we can write

V(t) = u'(t)Ji(t)

for smooth functions u’ : (0,b) — R.
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* In normal coordinates, from the form of Jacobi fields vanishing at a point, we can write

0 0
(t) Ox; (1) Oz 1y(1)

In this form one can show that the u’ extend smoothly to [0, b] (we omit this).

and V(t) = tu'(t)

* Define ‘ '
X = U,ZDtJZ' and Y = uzji,

and observe that D;V = X + Y on the intervals where V' is smooth. Let {ag < a; <
- < ay } be the corresponding partition.

* We aim to show that
d
|D:V[P = Rm(V, 4,7, V) = SV X) + Y%

Start by differentiating (V, X):

d
dt
From the Jacobi equation one can show that

SV, X) = (DV,X) + (V,D,X) = (X + Y, X) + (V, D, X).

DX = 4'D.J; — R(V,%)7,
hence
(DX, V) = (4! D, J;, u*J\) — Rm(V,#)7. 4.1)

But at ¢ = 0 we have (D,J;, J\) — (J;, D;J)) = 0, and therefore by Lemma 4.1,
(DyJ;, J\) = (Ji, Dy Jy). Thus the first term in (4.1) becomes

(W' Dy Ji, ut ) = WDy Js, Jy) = (08T, uDyJy) = (Y, X).

Substituting this into (4.1) and then into the derivative formula above gives the desired
identity.

* Now compute:

I(V,V) = Z/ (IDV* = Rm(V, 4,4, V)) dt
_Z (V, X)] /yYPdt

/ Y2t

since V' and X are continuous. Hence I(V, V) > 0.

« If [(V,V) = 0, then necessarily @' = 0, i.e. the u’ are constant. Therefore V' is an
R-linear combination of Jacobi fields, hence itself a Jacobi field.

O
A much more general theorem is the Morse index theorem, which can be found in [1]. The

Morse index theorem justifies the terminology “index” in the definition of /, and it is important
at least to mention it. The statement of the theorem is as follows:
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Theorem 4.5 (The Morse index theorem). Let (M, g) be a Riemannian manifold and
let v : [a,b] — M be a geodesic. Denote by T the maximal dimension of subspaces
of normal vector fields along v on which the index form I is negative definite. Then
T equals the number of conjugate points of 7y in (a,b), counted with multiplicity (i.e.
taking the order into account).



CHAPTER 5

Cut points

5.1 Cut times and cut loci

In this chapter we will study conjugate points further, and the diffeomorphism property of
exp,,.

Motivation 5.1 Suppose we have a curve 7y : [a,b] — M which is a unit-speed geodesic.
There are two possibilities: either the geodesic is minimizing everywhere, or (the more com-
mon case) beyond some point it ceases to be minimizing (for example, this would happen if
passed through a conjugate point). By continuity, the restriction of -y that is length-minimizing
has domain either [a, to) or [a, c0). In fact, because of unit speed, the number ¢ € {tq — a, oo}
is the time until a moving point along 7 stops moving along a length-minimizing curve.

We recall that we use the notation ~, for the maximal geodesic curve starting at a point p with
initial velocity v. For convenience, we will also take the domain to be [0, b].

Definition 5.1 (Cut time and cut locus). Let (M, g) be a complete and connected Rieman-
nian manifold, and let p € M, v € T,,M. We define the cut time:

teut(p, v) = sup{b > 0 | the geodesic 7, oy is minimizing}.
We also define the cut locus:

Cut(p) = {q € M | Iy, with v, (tew(p,v)) = q},

whose elements are called cut points.

Proposition 5.1. Let (M, g) be a complete and connected Riemannian manifold, p €
M, and let v € T, M be unit. Write toy = tow(p,v). Then:

(a) If0 < b < tew, then v,|j0,p) has no conjugate points and is the unique unit-speed
minimizing curve.

(b) If tew < 00, then 7y, |01, is minimizing and: i) v,(te) is conjugate to p and/or
ii) there exist at least two unit-speed minimizing geodesics from p to ~y,(teu)-

Proof. For (a): Let 0 < b < t¢y. By definition of ¢, we can find 0 < b < ¢ < t.y such that
Yv|[0,¢ i minimizing, and we observe that by Theorem 4.3 the point v, (t) is not conjugate for
any 0 < ¢ < b. Note that v, |j) is minimizing since 7, o is (Why?). The geodesic 7,0, is
also unique. If it were not (and there were another one, say ), then by uniqueness of geodesics
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we would have 7(b) # ~,(b). Thus the curve ¢ which equals y on [0, b] and equals ~, on [b, ]
1s a minimizing, piecewise geodesic curve with a corner. This means—as is well known—that
it can be smoothed at the corner to produce a shorter curve, a contradiction.

For (b): Assume ., < 00, and choose a sequence {b; };’0:1 with b; 7 teu, such that 7y, [(,5,) is
minimizing. By continuity we have:
dg(p, Yo(tew)) = lim dg<pa ’7v<bj)) = lim b; = teu,
]—)OO ]—)OO

which indicates that -, is minimizing on [0, t.,]. Now suppose that 7, (Z.y) is not conjugate
to p. We will show that necessarily there are two unit-speed minimizing geodesics from p
to Yy (fcur), and thus the proposition follows. Choose a sequence {b;}52, with b; 7 ey, and
by the definition of .y, none of the %|[07b].] is minimizing. Hence, by Hopf—Rinow, we can
find a unit-speed minimizing geodesic ; : [0,a;] — M from p to 7,(b;), with a; < b;.
Define the unit vectors w; = +,(0). By compactness of the unit sphere, there is a convergent
subsequence; without loss of generality assume w; — w. Similarly, since {a;}32, is bounded,
we may assume (again WLOG) that a; — a. Then:

Yo(bj) = v;(a;) = exp,(ajw;) — exp,(aw),
and:

feu = dy(p, o(few)) = lim dy(p,75(a;)) = lim a; = a,

50 (t) = exp,(tw) on [0, .y is also a unit-speed minimizing geodesic. We must show that
~, and ~y are not the same. Since 7, () is not conjugate, Proposition 3.1 implies that ¢.v is a
regular point of exp,,, hence exp,, is locally invertible there. Because exp,,(a;w;) = exp,(b;v),
and since bjv — t.,v, by injectivity the vectors a;w; must stay at some distance away from
the neighborhood where exp, is inverted. Passing to the limit gives {cuv # aw, hence 7, and
~ do not coincide. ]

We also state the following theorem, which we will not prove. We refer the reader to [4].

Theorem 5.1 (Continuity of cut times). Let (M, g) be a complete and connected Rie-
mannian manifold. The function t., : UT M — (0, 00| on the unit tangent bundle

UTM = {(p,v) € TM | Jv|, = 1}

is continuous.

5.2 The domain of injectivity

Motivation 5.2 Our intuition, together with Proposition 5.1, indicates that geodesics be-
have poorly near cut times. Thus, in studying the exponential map it may be useful to study
geodesics away from these times. This leads to the definition of the domain of injectivity.

Definition 5.2 (Domain of injectivity and tangent cut locus). Let (1, g) be a complete and
connected Riemannian manifold. We define the domain of injectivity of p by

ID(p) = {v € T,M | [v] < tew(p,v/[v])}-
We also define the boundary of this set, called the tangent cut locus:
TCL(p) = 0ID(p) = {v € T,M | [v| = tew(p, v/|v])}.
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Theorem 5.2. Let (M, g) be a complete and connected Riemannian manifold, and let
p € M. Then:

(a) Cut(p) C M is a closed set of measure zero.

(b) The restriction of the exponential map to 1D(p) is surjective.

(c) The restriction of the exponential map to 1D(p) is a diffeomorphism onto M \
Cut(p).

Proof. For (a): Let {¢;}32, C Cut(p) be a sequence converging to g, and we will show that
q € Cut(p). Write ¢; = exp,(teu(p, v;)v;) for unit vectors v;. By compactness of the unit
sphere, there is a convergent subsequence of {v, }; without loss of generality assume v; — v.
Then

tcut(pu Uj) — tcut<p7 U)

by continuity of ¢, and moreover t.,(p, v) < co. By continuity of eXp,,

a; = epr(tcut<p7 Uj)vj) — expp(tcut(p, U)U) € CUt<p)7

hence g € Cut(p). As for the measure statement, the idea is to show that TCL(p) has measure
zero. Then, since exp,, is smooth,

Cut(p) = exp,(TCL(p))

also has measure zero. The set TCL(p) is easily seen to have measure zero: represent TCL(p)
locally as a graph coming from the implicit relation |v| = t.(p, v/|v|) (here one introduces
coordinates, for example polar coordinates r = tqy(p, 01, ...,0")). At most a countable col-
lection of local graphs covers TCL(p), and each of these has measure 0 (being the graph of a
continuous function). Hence TCL(p) has measure 0.

For (b): Use the Hopf—~Rinow theorem.

For (c): From the definitions we have exp,(ID(p)) = M \ Cut(p). Since exp,(ID(p)) con-
tains no cut points, it should contain no conjugate points of p either (see Theorem 4.3). Since
there are no cut points, exp, on ID(p) is 1-1. Since there are no conjugate points, exp, on
ID(p) is a local diffeomorphism (by Proposition 3.1), and thus, combined with injectivity, a
diffeomorphism. O
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